首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Embryonic Drosophila cells (Kc cells) were used to further characterize sterol-independent modulation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity. 3-Methyl-3-5-dihydroxyvalerate (mevalonate), 3-fluoromethyl-3,5-dihydroxyvalerate (fluoromevalonate), and 3-ethyl-3,5-dihydroxyvalerate (homomevalonate) were tested as modulators. Although mevalonate caused a rapid, reversible suppression of reductase activity, fluoro- and homomevalonate increased activity; fluoromevalonate was more effective than homomevalonate. Mevalonate, added simultaneously with fluoromevalonate, blocked the analogue's effect on Kc cell reductase activity. However, mevalonate did not suppress an established fluoromevalonate increase in HMG-CoA reductase activity. Fluoromevalonate blocked [1-14C, 5-3H]mevalonate conversion to 14CO2- and 3H-labeled lipids and [3H] mevalonate 5-pyrophosphate accumulated. Neither protein nor RNA synthesis were required for mevalonate-mediated suppression of reductase activity. However, fluoromevalonate's effect on reductase activity required protein synthesis. Furthermore, in the absence of protein synthesis, fluoromevalonate-stabilized Kc cell HMG-CoA reductase activity. We have concluded that mevalonate, fluoromevalonate, homomevalonate, and compactin (mevinolin) modulated HMG-CoA reductase activity because they altered isoprenoid carbon flow to a post-isopentenyl 1-pyrophosphate regulatory, signal molecule.  相似文献   

2.
To ascertain whether the phosphorylation-dephosphorylation reaction is actually involved in the in vivo regulation of intestinal 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, dietary modulation of the activation state of the enzyme was studied in isolated epithelial cells of rats. Substitution of a sucrose-enriched semipurified diet for the commercial non-purified diet caused a significant increase in jejunal activity with a concomitant decrease in ileal activity. Jejunal activity increased without influencing the activation state whereas at the early stage of dietary manipulation, there was a rapid decrease in apparent activity compared to total activity in the ileum, hence the reduction of the activation state. These observations favor the view that the phosphorylation (inactivation) reaction is responsible for the regulation of intestinal HMG-CoA reductase in vivo. In contrast, dietary fat-dependent stimulation of jejunal reductase activity was mainly attributable to an increase in enzyme protein rather than in the level of the activation. The results suggest a complex controlling feature of the cholesterol synthesis in the intestine.  相似文献   

3.
A calcium-activated and phospholipid-dependent protein kinase (protein kinase C) catalyzes the phosphorylation of both insoluble microsomal (Mr approximately 100,000) and purified soluble (Mr = 53,000) 3-hydroxy-3-methylglutaryl coenzyme A reductase. The phosphorylation and concomitant inactivation of enzymic activity of HMG-CoA reductase was absolutely dependent on Ca2+, phosphatidylserine, and diolein. Dephosphorylation of phosphorylated HMG-CoA reductase was associated with the loss of protein bound radioactivity and reactivation of enzymic activity. Maximal phosphorylation of purified HMG-CoA reductase was associated with the incorporation of 1.05 +/- 0.016 mol of phosphate/mol of native form of HMG-CoA reductase (Mr approximately 100,000). The apparent Km for purified HMG-CoA reductase and histone H1 was 0.08 mg/ml, and 0.12 mg/ml, respectively. The tumor-promoting phorbol ester, phorbol 12-myristate 13-acetate stimulated the protein kinase C-catalyzed phosphorylation of HMG-CoA reductase. Increased phosphorylation of HMG-CoA reductase by phorbol 12-myristate 13-acetate suggests a possible in vivo protein kinase C-mediated mechanism for the short-term regulation of HMG-CoA reductase activity. The identification of the protein kinase C system in addition to the reductase kinase-reductase kinase kinase bicyclic cascade systems for the modulation of the enzymic activity of HMG-CoA reductase may provide new insights into the molecular mechanisms involved in the regulation of cholesterol biosynthesis.  相似文献   

4.
5.
Biphasic modulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase) has been demonstrated in primary hepatocyte cultures treated with the lanosterol 14 alpha-methyl demethylase inhibitor miconazole. At concentrations of the drug which lead to suppressed levels of reductase activity, the appearance of a polar, mevalonate-derived sterol is noted. Cochromatography of the identified sterol with 3 beta-hydroxylanost-8-en-32-aldehyde tentatively identified the metabolite as a lanosterol 14 alpha-methyl demethylation intermediate. Subsequent isolation and characterization of the metabolite by gas chromatography/mass spectroscopy confirmed this structural assignment. When the lanosterol 14 alpha-methyl demethylase-deficient mutant, AR45, was treated with authentic metabolite, a suppression of HMG-CoA reductase was observed. These results demonstrate that metabolism of the oxygenated biosynthetic intermediate is not required to suppress reductase activity. The results also strongly support the hypothesis that oxygenated 14 alpha-methyl demethylase intermediates are endogenously generated modulators of HMG-CoA reductase activity.  相似文献   

6.
The relation between carnitine palmitoyltransferase (CPT) activity and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity was investigated. Rats were treated with aminocarnitine or 1-carnitine overnight. In rats, in which CPT activity was inhibited by aminocarnitine, plasma and hepatic triacylglycerol contents were increased 5- to 6-fold. The plasma cholesterol concentration was unchanged, while the hepatic cholesterol content was lowered (-16%). Hepatic cholesterol synthesis, determined by following the incorporation of 14C-acetate and 3H2O into digitonin-precipitable sterols, in liver slices was increased 5- to 7-fold. HMG-CoA reductase activity in liver microsomes was increased to the same extent.  相似文献   

7.
A water-soluble derivative of cholesterol, methoxypolyoxyethylated (MPOE) cholesterol, has been synthesized and used to study the regulation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the key regulatory enzyme in cholesterol biosynthesis. MPOE cholesterol causes a specific, rapid and linear decline in HMG-CoA reductase in cultured rat liver cells. MPOE cholesterol is not a direct allosteric inhibitor of HMG-CoA reductase, does not appear to regulate HMG-CoA reductase through changes in membrane environment, and does not change the phosphorylation state and level of activation of rat liver cell HMG-CoA reductase. In order to confirm our data, which were consistent with a model in which MPOE cholesterol regulates the amount of HMG-CoA reductase and not its activity, we made direct measurements of reductase mRNA levels. The decline in HMG-CoA reductase in MPOE cholesterol-treated rat liver cells is preceded by the rapid disappearance of HMG-CoA reductase mRNA. As a water-soluble cholesterol derivative, MPOE cholesterol represents a useful model compound for studies on the regulation of the level of HMG-CoA reductase and its cognate mRNA.  相似文献   

8.
The activity of acetoacetyl-CoA (AcAc-CoA) ligase (E.C.6.2.1.16) in hepatocytes from rats was shown to be the same as the activity in homogenates of their livers. In hepatocytes treated with 25-hydroxycholesterol, AcAc-CoA ligase, 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase and rates of sterol synthesis were substantially decreased. Hepatocytes treated with high density lipoprotein (HDL) exhibited a 2 to 4 fold induction of HMG-CoA reductase activity; however an accompanying increase in AcAc-CoA ligase activity and the rate of cholesterol synthesis was not observed. We conclude (a) that increases in the activity of HMG-CoA reductase when mediated by HDL in hepatocytes do not result in a corresponding change in the capacity for sterol synthesis and (b) that changes in the activity state of HMG-CoA reductase can be dissociated from that of AcAc-CoA ligase.  相似文献   

9.
Microsomal human liver HMG-CoA reductase has been shown to exist in active (dephosphorylated) and inactive (phosphorylated) forms. Microsomal HMG-CoA reductase was inactivated in vitro by ATP-Mg in a time dependent manner; this inactivation was mediated by reductase kinase. Incubation of inactivated enzyme with phosphatase resulted in a time dependent reactivation (dephosphorylation). Polyacrylamide gel electrophoresis of purified HMG-CoA reductase incubated with reductase kinase and radiolabeled ATP revealed that the 32P radioactivity and HMG-CoA reductase enzymic activity were localized in a single electrophoretic position. Partial dephosphorylation of the phosphorylated enzyme was associated with loss of 32P and increase in HMG-CoA reductase activity. Human reductase kinase also exists in active and inactive forms. The active (phosphorylated) form of reductase kinase can be inactivated by incubation with phosphatase. Phosphorylation of inactive reductase kinase with ATP-Mg and a second kinase, reductase kinase kinase, was associated with a parallel increase in the enzymic activity of reductase kinase and the ability to inactivate HMG-CoA reductase. The combined results present initial evidence for the presence of human HMG-CoA reductase and reductase kinase in active and inactive forms, and the in vitro modulation of its enzymic activity by a bicyclic phosphorylation cascade. This bicyclic cascade system may provide a mechanism for short-term regulation of the pathway for cholesterol biosynthesis in man.  相似文献   

10.
The lanosterol 14 alpha-methyl demethylase inhibitors miconazole and ketoconazole have been used to assess their effects upon cholesterol biosynthesis in cultured Chinese hamster ovary cells. In Chinese hamster ovary cells treated with either agent, an initial accumulation of lanosterol and dihydrolanosterol has been observed. At elevated concentrations, however, ketoconazole, but not miconazole, causes the preferential accumulation of 24,25-epoxylanosterol and squalene 2,3:22,23-dioxide. These metabolites accumulate at the expense of lanosterol, thereby demonstrating a second site of inhibition for ketoconazole in the sterol biosynthetic pathway. Both demethylase inhibitors produced a biphasic modulation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, the rate-limiting enzyme in the cholesterol biosynthetic pathway. The biphasic modulation is characterized by low levels of the drugs suppressing HMG-CoA reductase activity which is restored to either control or above control values at higher drug concentrations. This modulatory effect of the lanosterol demethylase inhibitors upon HMG-CoA reductase was not observed in the lanosterol 14 alpha-methyl demethylase-deficient mutant AR45. Suppression of HMG-CoA reductase activity is shown to be due to a decrease in the amount of enzyme protein consistent with a steroidal regulatory mechanism. Collectively, the results establish that lanosterol 14 alpha-methyl demethylation, but not 24,25-epoxylanosterol formation, is required to suppress HMG-CoA reductase in the manner described by lanosterol demethylase inhibitors.  相似文献   

11.
A Ca2+/calmodulin-dependent kinase has been purified which catalyzed the phosphorylation and concomitant inactivation of both the microsomal native (100,000 Da) and protease-cleaved purified 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase) (53,000 Da) fragments. This low molecular weight brain cytosolic Ca2+/calmodulin-dependent kinase phosphorylates histone H1, synapsin I, and purified HMG-CoA reductase as major substrates. The kinase, purified by sequential chromatography on DEAE-cellulose, calmodulin affinity resin, and high performance liquid chromatography (TSKG 3000 SW) is an electrophoretically homogeneous protein of approximately 110,000 Da. The molecular weight of the holoenzyme, substrate specificity, subunit protein composition, subunit autophosphorylation, subunit isoelectric points, and subunit phosphopeptide analysis suggest that this kinase of Mr 110,000 may be different from other previously reported Ca2+/calmodulin-dependent kinases. Maximal phosphorylation by the low molecular form of Ca2+/calmodulin-dependent kinase of purified HMG-CoA reductase revealed a stoichiometry of approximately 0.5 mol of phosphate/mol of 53,000-Da enzyme. Dephosphorylation of phosphorylated and inactivated native and purified HMG-CoA reductase revealed a time-dependent loss of 32P-bound radioactivity and reactivation of enzyme activity. Based on the results reported here, we propose that HMG-CoA reductase activity may be modulated by yet another kinase system involving covalent phosphorylation. The elucidation of a Ca2+/calmodulin-dependent HMG-CoA reductase kinase-mediated modulation of HMG-CoA reductase activity involving reversible phosphorylation may provide new insights into the molecular mechanisms involved in the regulation of cholesterol biosynthesis.  相似文献   

12.
HMG-CoA reductase is the key enzyme for the biosynthesis of isoprenoid compounds essential for cell growth and differentiation. Its tyrosine kinase-dependent modulation has recently been suggested and described in the ErbB-2 overexpressing cell line SKBR-3 [Asslan et al. (1998) Biochem. J. 330, 241-246]. Epidermal growth factor (EGF) increased the HMG-CoA reductase activity, protein, and mRNA levels only in ErbB-2-expressing cells (SKBR-3 and MCF-7) but not in MDA-MB-468 cells that do not express ErbB-2 even though their EGF receptor was efficiently phosphorylated. Tyrphostin AG 879, a specific inhibitor of ErbB-2 tyrosine kinase activity, decreased HMG-CoA reductase activity only in cells that expressed ErbB-2. A functional EGF receptor appeared to be necessary since its inhibition by the specific tyrphostin AG 1478 abolished the EGF effects. Phosphatidylinositol 3-kinase (PI 3-kinase) might be a crucial enzyme in the signaling pathway since the specific inhibitor, LY 294002, was shown to inhibit HMG-CoA reductase activity and to completely abolish the stimulation by EGF in SKBR-3 cells.  相似文献   

13.
The relationship of microsomal cholesterol and phospholipid fatty acid composition to the activities of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase and acyl-CoA: cholesterol acyltransferase was investigated in male, female virgin and pregnant rats when hepatic cholesterogenesis was stimulated by cholestyramine. Cholestyramine increased HMG-CoA reductase activity in both sexes but had no effect on microsomal free cholesterol level or acyl-CoA: cholesterol acyltransferase activity. The data suggest that during cholestyramine treatment high rates of bile acid synthesis are supported by preferential channelling of cholesterol into this pathway, whilst the substrate pool and activity of acyl-CoA:cholesterol acyltransferase are maintained unaltered. The lack of a consistent relationship among enzyme activities and microsomal lipid composition infers that HMG-CoA reductase and acyl-CoA:cholesterol acyltransferase are regulated in vivo by independent mechanisms which are unlikely to involve modulation by the physical properties of the microsomal lipid.  相似文献   

14.
Extensive studies have demonstrated that the normal inhibition of cholesterol synthesis by cholesterol feeding is decreased in all hepatomas studied in vivo. This loss of the normal feedback regulation of cholesterol synthesis has been shown to be due to the failure of cholesterol ingestion to inhibit the activity of hydroxymethylglutaryl (HMG)-CoA reductase. The basis for this absence of feedback control of cholesterogenesis is unknown. Studies to date have not demonstrated structural or kinetic differences between the HMG-CoA reductase of normal liver and hepatoma. The present study, however, demonstrates significant differences in the activation state of HMG-CoA reductase from normal liver and hepatoma. In normal liver only approximately 10-20% of the microsomal HMG-CoA reductase is in the dephosphorylated, active form while 80-90% is in the phosphorylated, inactive state. In contrast, in three different Morris hepatomas in vivo, from 53 to 73% of the HMG-CoA reductase is in the active state. That the increased activation state in hepatomas is a property of tumor tissue and is not solely due to rapid growth is demonstrated by the fact that in both fetal and regenerating liver an enhanced activation state of HMG-CoA reductase is not observed. Additionally, preincubation with magnesium and ATP results in the inhibition of HMG-CoA reductase both in tumor and in liver. Presumably, this decrease in HMG-CoA reductase activity is due to the phosphorylation of the enzyme. Similarly, the preincubation of tumor and liver microsomes with phosphatase results in an increase in HMG-CoA reductase activity presumably by the dephosphorylation of the enzyme to its active form. The relationship between the altered activation state of HMG-CoA reductase in hepatomas and the reduction in the feedback regulation of this enzyme in liver tumors remains to be explored.  相似文献   

15.
Immunoprecipitation of native rat liver microsomal 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, phosphorylated by [gamma-32P]ATP in the presence of reductase kinase, revealed a major 97-kDa 32P band which disappeared upon competition with pure unlabeled 53-kDa HMG-CoA reductase. A linear correlation between the expressed/total HMG-CoA reductase activity ratio (E/T) and the fraction of 32P released from the 97-kDa enzyme established the validity of the E/T ratio as an index of HMG-CoA reductase phosphorylation state in isolated microsomes. Incubation of rat hepatocytes with mevalonolactone resulted in a rapid increase in phosphorylation of microsomal reductase (decrease in E/T) followed by an enhanced rate of decay of total reductase activity which was proportional to the loss of 97-kDa enzyme mass determined by immunoblots. Inhibitors of lysosome function dampened both basal and mevalonate-induced reductase degradation in hepatocytes. In an in vitro system using the calcium-dependent protease calpain-2, up to 5-fold greater yields of soluble 52-56-kDa fragments of reductase (immunoblot and total activity) were obtained when the substrate 97-kDa reductase was phosphorylated before proteolysis. Immunoblots of unlabeled phosphorylated reductase compared with gels of immunoprecipitated 32P-labeled reductase resolved a 52-56-kDa doublet which contained 32P solely in the upper band. These data suggest that a major phosphorylation site of HMG-CoA reductase lies within the "linker" segment joining the membrane spanning and cytoplasmic domains of the native 97-kDa protein.  相似文献   

16.
Extensively purified rat liver cytosolic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase kinase was used to examine the role of ADP in inactivation of HMG-CoA reductase (EC 1.1.1.34). Solubilized HMG-CoA reductase was a suitable substrate for HMG-CoA reductase kinase. At sufficiently high concentrations of solubilized HMG-CoA reductase, reductase kinase activity approached that measured using microsomal HMG-CoA reductase as substrate. Inactivation of solubilized HMG-CoA reductase by HMG-CoA reductase kinase required both MgATP and ADP. Other nucleoside diphosphates, including alpha, beta-methylene-ADP, could replace ADP. HMG-CoA reductase kinase catalyzed phosphorylation of bovine serum albumin fraction V by [gamma-32P]ATP. This process also required a nucleoside diphosphate (e.g. alpha, beta-methylene-ADP). Nucleoside diphosphates thus act on HMG-CoA reductase kinase, not on HMG-CoA reductase. For inactivation of HMG-CoA reductase, the ability of nucleoside triphosphates to replace ATP decreased in the order ATP greater than dATP greater than GTP greater than ITP, UTP. TTP and CTP did not replace ATP. Both for inactivation of HMG-CoA reductase and for phosphorylation of bovine serum albumin protein, the ability of nucleoside diphosphates to replace ADP decreased in the order ADP greater than CDP, dADP greater than UDP. GDP did not replace ADP. Nucleoside di- and triphosphates thus appear to bind to different sites on HMG-CoA reductase kinase. Nucleoside diphosphates act as allosteric activators of HMG-CoA reductase kinase. For inactivation of HMG-CoA reductase by HMG-CoA reductase kinase, Km for ATP was 140 microM and the activation constant, Ka, for ADP was 1.4 mM. The concentration of ADP required to modulate reductase kinase activity in vitro falls within the physiological range. Modulation of HMG-CoA reductase kinase activity, and hence of HMG-CoA reductase activity, by changes in intracellular ADP concentrations thus may represent a control mechanism of potential physiological significance.  相似文献   

17.
18.
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the enzyme catalyzing the rate-limiting step in cholesterol biosynthesis, exists in one active (dephosphorylated) and one inactive (phosphorylated) form in liver microsomes obtained from several animal species. The present study was undertaken in order to determine a) whether the human enzyme also exists in active and inactive readily interconvertible forms; b) whether the large inter-individual variation in HMG-CoA reductase activity observed in normal man can be explained by variations in the activation state of the enzyme; and c) to characterize the reactivity of antibodies raised against rat liver HMG-CoA reductase with the intact human microsomal enzyme. HMG-CoA reductase activity, assayed in microsomes prepared in the presence of 50 mM NaF, was only 17 +/- 3% of the activity observed in microsomes prepared from the same liver in the absence of fluoride. Preincubation of microsomes prepared in NaF with alkaline phosphatase resulted in a tenfold increase of enzyme activity, while the activity of microsomes prepared without fluoride was increased also (by about 45%) with this treatment. On the other hand, the activated enzyme could be inactivated by incubation of microsomes with Mg-ATP. In eleven normal weight, normolipidemic gallstone patients, the HMG-CoA reductase activity determined in microsomes prepared without NaF ("standard procedure") reflected well both the "expressed" activity (in microsomes prepared with NaF) and the "total" (fully activated) enzyme activity; correlation coefficients were +0.80 and +0.84, respectively. Preincubation of human liver microsomes with rabbit antiserum against partially purified HMG-CoA reductase from rat liver resulted in a 72 +/- 6% inhibition of enzyme activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
In hypophysectomized rats, hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity, immunoreactive 97-kilodalton (97-kDa) protein, and mRNA were all reduced to undetectable levels. Administration of triiodothyronine (T3) resulted in large increases in all three after a 36-h lag period. HMG-CoA reductase activity, immunoreactive 97-kDa protein levels, and reductase mRNA levels were tightly correlated. Feeding hypophysectomized rats diets containing the bile acid sequestrant colestipol, together with the potent reductase inhibitor mevinolin, resulted in an increase in HMG-CoA reductase activity similar to that seen with T3 but a lesser stimulation of reductase mRNA levels. These results suggest that agents which cause depletion of mevalonate-derived products may share in part with T3 a common mechanism for increasing levels of HMG-CoA reductase activity in order to satisfy cellular needs for these products. Dexamethasone treatment, which is known to prevent the T3-mediated stimulation of reductase activity, caused a marked decrease in 97-kDa immunoreactive material but had little effect on reductase mRNA levels.  相似文献   

20.
Pseudomonas sp. M grown on mevalonate as the sole source of carbon has 200- to 800-fold induced levels of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. The enzyme, which was purified to a homogeneous state in 54% yield (final specific activity, 60.5 mumol of NAD+ reduced per min per mg of protein), converted R-mevalonate (Km = 0.15 mM) to S-HMG-CoA. Activity was sensitive to sulfhydryl modifying reagents. The apparent molecular weight of the holoenzyme was 178,000 and that of the subunit 43,000. The enzyme thus appears to be a tetramer. Comparison of a 23-residue amino-terminal sequence with the cDNA-derived sequence of Chinese hamster ovary cell HMG-CoA reductase showed little homology and antibody raised against the Pseudomonas enzyme did not appear to cross-react with rat liver HMG-CoA reductase. Addition of mevalonate to cells growing on glucose was followed by a rapid and biphasic induction of HMG-CoA reductase activity. During phase I, mevalonate or its catabolites may accumulate in intact cells of Pseudomonas sp. M and acetoacetate, a competitive inhibitor of HMG-CoA reductase (Ki = 3.2 mM), may feedback inhibit the enzyme under these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号