首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetics of quantitative traits in Arabidopsis thaliana   总被引:1,自引:0,他引:1  
Kearsey MJ  Pooni HS  Syed NH 《Heredity》2003,91(5):456-464
The genetic control of 22 quantitative traits, including developmental rates and sizes, was examined in generations of Arabidopsis thaliana derived from the cross between the ecotypes, Columbia (Col) and Landsberg erecta (Ler). The data were obtained from three sets of families raised in the same trial: the 16 basic generations, that is, parents, F(1)'s, F(2)'s, backcrosses, recombinant inbred lines (RILs) and a triple test cross (TTC), the latter produced by crossing the RILs to Col, Ler and their F(1). The data were analysed by two approaches. The first (approach A) involved traditional generation mean and variance component analysis and the second (B), based around the RILs and TTC families, involved marker-based QTL analysis.From (A), genetic differences between Col and Ler were detected for all traits with moderate heritabilities. Height at flowering was the only trait to show heterosis. Dominance was partial to complete for all height traits, and there was no overdominance but there was strong evidence for directional dominance. For most other traits, dominance was ambidirectional and incomplete, with average dominance ratios of around 80%. Epistasis, particularly of the duplicate type that opposes dominance, was a common feature of all traits. The presence of epistasis must imply multiple QTL for all traits.The QTL analysis located 38 significant effects in four regions of chromosomes I, II, IV and V, but not III. QTL affecting rosette size and leaf number were identified in all four regions, with days to maturity on chromosomes IV and V. The only QTL for height was located at the expected position of the erecta gene (chromosome II; 50 cM), but the additive and dominance effects of this single QTL did not adequately explain the generation means. The possible involvement of other interacting height QTL is discussed.  相似文献   

2.
Root system size (RSS) is a complex trait that is greatly influenced by environmental cues. Hence, both intrinsic developmental pathways and environmental-response pathways contribute to RSS. To assess the natural variation in both types of pathways, we examined the root systems of the closely related Arabidopsis ecotypes Landsberg erecta (Ler) and Columbia (Col) grown under mild osmotic stress conditions. We found that Ler initiates more lateral root primordia, produces lateral roots from a higher percentage of these primordia, and has an overall larger root system than Col under these conditions. Furthermore, although each of these parameters is reduced by osmotic stress in both ecotypes, Ler shows a decreased sensitivity to osmotica. To understand the genetic basis for these differences, QTL for RSS under mild osmotic stress were mapped in a Ler x Col recombinant inbred population. Two robust quantitative trait loci (QTL) were identified and confirmed in near-isogenic lines (NILs). The NILs also allowed us to define distinct physiological roles for the gene(s) at each locus. This study provides insight into the genetic and physiological complexity that determines RSS and begins to dissect the molecular basis for naturally occurring differences in morphology and developmental plasticity in the root system.  相似文献   

3.
Luo X  Fu Y  Zhang P  Wu S  Tian F  Liu J  Zhu Z  Yang J  Sun C 《植物学报(英文版)》2009,51(4):393-408
A set of 148 F9 recombinant inbred lines (RILs) was developed from the cross of an indica cultivar 93-11 and japonica cultivar DTT13,showing strong F1 heterosis.Subsequently,two backcross F1 (BCF1) populations were constructed by backcrossing these 148 RILs to two parents,93-11 and DT713.These three related populations (281BCF1 lines,148 RILs) were phenotyped for six yield-related traits in two locations.Significant inbreeding depression was detected in the population of RILS and a high level of heterosis was observed in the two BCF1 populations.A total of 42 main-effect quantitative trait loci (M-QTLs) and 109 epistatic effect QTL pairs (E-QTLs) were detected in the three related populations using the mixed model approach.By comparing the genetic effects of these QTLs detected in the RILs,BCF1 performance and mid-parental heterosis (HMp),we found that,in both BCF1 populations,the QTLs detected could be classified into two predominant types:additive and over-domlnant loci,which indicated that the additive and over-dominant effect were more important than complete or partially dominance for M-QTLs and E-QTLs.Further,we found that the E-QTLs detected collectively explained a larger portion of the total phenotypic variation than the M-QTLs in both RILs and BCF1 populations.All of these results suggest that additive and over-dominance resulting from epistatic loci might be the primary genetic basis of heterosis in rice.  相似文献   

4.
5.
6.
Summary The Arabidopsis ecotypes Columbia (Col), Landsberg erecta (Ler), Cape Verde Island (Cvi) and Wassilewskija (WS) have been tested for their regeneration response in vitro. A characteristic morphology of leaf-derived calluses has been found for each ecotype. Differences in regeneration ability have been detected depending on the plant strain. the explant source and on the culture medium composition. In CIR/SIR media, which contain 0.5 mg l−1 (2.26 μM) of 2,4-dichlorophenoxyacetic acid (2,4-D) and glucose, root explants from the four ecotypes are able to reach a considerable regeneration level, while leaf explants do not regenerate beyond a basal level (5% approximately). In CIH/SIH media, which contain 2.2 mg l−1 (9.95 μM) of 2,4-D and suerose, leaf explants from all the ecotypes, with the exception of Col, are able to regenerate, but they do it at variable levels (Ler 5.75%, WS 75.09%, and Cvi 27.53% as regeneration rates). With these media all root explants are able to regenerate, but again the four ecotypes show different rates (Col 27.7%, Ler 57.25%, WS 98.54%, and Cvi 42.25%). The variation of the different medium components affects differentially the regeneration ability of the four ecotypes depending also on the kind of explant. Thus, when the 2,4-D concentration is raised WS duplicates its regeneration rate in both leaf and root explants. Changing glucose for sucrose in CIR/SIR media diminishes to the basal level the regeneration of Cvi root explants, while the CIH/SIH salts and vitamin concentration permit the regeneration of leaf explants from all the ecotypes except Col. The genes responsible for those observed differences in regeneration ability could be identified and mapped by analyzing the in vitro regeneration behavior of the recombinant inbred lines (RILs) obtained by crossing these ecotypes.  相似文献   

7.
Lee I  Amasino RM 《Plant physiology》1995,108(1):157-162
We have compared the flowering response to vernalization, photoperiod, and far-red (FR) light of the Columbia (Col) and Landsberg erecta (Ler) ecotypes of Arabidopsis into which the flowering-time locus FRIGIDA (FRI) has been introgressed with that of the wild types Col, Ler, and San Feliu-2 (Sf-2). In the early-flowering parental ecotypes, Col and Ler, a large decrease in flowering time in response to vernalization was observed only under short-day conditions. However, Sf-2 and the Ler and Col genotypes containing FRI showed a strong response to vernalization when grown in either long days or short days. Although vernalization reduced the responsiveness to photoperiod, plants vernalized for more than 80 d still showed a slight photoperiod response. The effect of FRI on flowering was eliminated by 30 to 40 d of vernalization; subsequently, the response to vernalization in both long days and short days was the same in Col and Ler with or without FRI. FR-light enrichment accelerated flowering in all ecotypes and introgressed lines. However, the FR-light effect was most conspicuous in the FRI-containing plants. Saturation of the vernalization effect eliminated the effect of FR light on flowering, although vernalization did not eliminate the increase of petiole length in FR light.  相似文献   

8.
Hybridization is an important factor in the evolution of plants; however, many of the studies that have examined hybrid fitness have been concerned with the study of early generation hybrids. We examined the early- and late-generation fitness consequences of hybridization between two ecotypes of the selfing annual Avena barbata in a greenhouse environment as well as in two natural environments. Fitness of early generation (F2) hybrids reflects both the action of dominance effects (hybrid vigor) and recombination (hybrid breakdown) and was not significantly different from that of the midparent in any environment. Fitness of later generation (F6) recombinant inbred lines (RILS) derived from the cross reflect both the loss of early generation heterozygosity as well as disruption of any coadapted gene complexes present in the parents. In all environments, F6 RILs were on average significantly less fit than the (equally homozygous) midparent, indicating hybrid breakdown through the disruption of epistatic interactions. However, the inbred F6 were also less fit than the heterozygous F2, indicating that hybrid vigor also occurs in A. barbata, and counteracts hybrid breakdown in early generation hybrids. Also, although the F6 generation mean is lower than the midparent mean, there are individual genotypes within the F6 generation that are capable of outperforming the parental ecotypes in the greenhouse. Fewer hybrid genotypes are capable of outperforming the parental ecotypes in the field. Overall, these experiments demonstrate how a single hybridization event can result in a number of outcomes including hybrid vigor, hybrid breakdown, and transgressive segregation, which interact to determine long-term hybrid fitness.  相似文献   

9.
Exogenously applied IAA stimulated cell elongation of segments excised from flower stalks of Arabidopsis thaliana ecotype Landsberg erecta (Ler) by increasing the cell wall extensibility, but it did not affect that of ecotype Columbia (Col). Treatment with a low pH buffer solution (pH 4.0) or fusicoccin (FC), a reagent activating H(+)-ATPases, significantly increased the cell wall extensibility and promoted elongation growth of flower stalk segments of both ecotypes, indicating that the flower stalk segments of Col possess the capacity to grow under acidic pH conditions. IAA promoted the proton excretion in segments of Ler but not of Col. On the other hand, FC increased the proton excretion in segments of Col as much as that of Ler. These results suggest that IAA activates the plasma membrane H(+)-ATPases in the segments of Ler but not those of Col, while FC activates them in both ecotypes. Flower stalks of Col may lack the mechanisms of activation by IAA of the plasma membrane H(+)-ATPases.  相似文献   

10.
11.
Luo LJ  Li ZK  Mei HW  Shu QY  Tabien R  Zhong DB  Ying CS  Stansel JW  Khush GS  Paterson AH 《Genetics》2001,158(4):1755-1771
The genetic basis underlying inbreeding depression and heterosis for three grain yield components of rice was investigated in five interrelated mapping populations using a complete RFLP linkage map, replicated phenotyping, and the mixed model approach. The populations included 254 F(10) recombinant inbred lines (RILs) derived from a cross between Lemont (japonica) and Teqing (indica), two backcross (BC) and two testcross populations derived from crosses between the RILs and the parents plus two testers (Zhong413 and IR64). For the yield components, the RILs showed significant inbreeding depression and hybrid breakdown, and the BC and testcross populations showed high levels of heterosis. The average performance of the BC or testcross hybrids was largely determined by heterosis. The inbreeding depression values of individual RILs were negatively associated with the heterosis measurements of the BC or testcross hybrids. We identified many epistatic QTL pairs and a few main-effect QTL responsible for >65% of the phenotypic variation of the yield components in each of the populations. Most epistasis occurred between complementary loci, suggesting that grain yield components were associated more with multilocus genotypes than with specific alleles at individual loci. Overdominance was also an important property of most loci associated with heterosis, particularly for panicles per plant and grains per panicle. Two independent groups of genes appeared to affect grain weight: one showing primarily nonadditive gene action explained 62.1% of the heterotic variation of the trait, and the other exhibiting only additive gene action accounted for 28.1% of the total trait variation of the F(1) mean values. We found no evidence suggesting that pseudo-overdominance from the repulsive linkage of completely or partially dominant QTL for yield components resulted in the overdominant QTL for grain yield. Pronounced overdominance resulting from epistasis expressed by multilocus genotypes appeared to explain the long-standing dilemma of how inbreeding depression could arise from overdominant genes.  相似文献   

12.
We have analysed the circadian rhythm of Arabidopsis thaliana leaf movements in the accession Cvi from the Cape Verde Islands, and in the commonly used laboratory strains Columbia (Col) and Landsberg (erecta) (Ler), which originated in Northern Europe. The parental lines have similar rhythmic periods, but the progeny of crosses among them reveal extensive variation for this trait. An analysis of 48 Ler/Cvi recombinant inbred lines (RILs) and a further 30 Ler/Col RILs allowed us to locate four putative quantitative trait loci (QTLs) that control the period of the circadian clock. Near-isogenic lines (NILs) that contain a QTL in a small, defined chromo- somal region allowed us to confirm the phenotypic effect and to map the positions of three period QTLs, designated ESPRESSO, NON TROPPO and RALENTANDO. Quantitative trait loci at the locations of RALENTANDO and of a fourth QTL, ANDANTE, were identified in both Ler/Cvi and Ler/Col RIL populations. Some QTLs for circadian period are closely linked to loci that control flowering time, including FLC. We show that flc mutations shorten the circadian period such that the known allelic variation in the MADS-box gene FLC can account for the ANDANTE QTL. The QTLs ESPRESSO and RALENTANDO identify new genes that regulate the Arabidopsis circadian system in nature, one of which may be the flowering-time gene GIGANTEA.  相似文献   

13.
Nonadditive gene expression in diploid and triploid hybrids of maize   总被引:14,自引:0,他引:14       下载免费PDF全文
Auger DL  Gray AD  Ream TS  Kato A  Coe EH  Birchler JA 《Genetics》2005,169(1):389-397
  相似文献   

14.
Two mapping populations of a cross between the Arabidopsis thaliana accessions Col-0 and C24 were cultivated and analyzed with respect to the levels of 181 metabolites to elucidate the biological phenomenon of heterosis at the metabolic level. The relative mid-parent heterosis in the F1 hybrids was <20% for most metabolic traits. The first mapping population consisting of 369 recombinant inbred lines (RILs) and their test cross progeny with both parents allowed us to determine the position and effect of 147 quantitative trait loci (QTL) for metabolite absolute mid-parent heterosis (aMPH). Furthermore, we identified 153 and 83 QTL for augmented additive (Z1) and dominance effects (Z2), respectively. We identified putative candidate genes for these QTL using the aracyc database ( http://www.arabidopsis.org/biocyc ), and calculated the average degree of dominance, which was within the dominance and over-dominance range for most metabolites. Analyzing a second population of 41 introgression lines (ILs) and their test crosses with the recurrent parent, we identified 634 significant differences in metabolite levels. Nine per cent of these effects were classified as over-dominant, according to the mode of inheritance. A comparison of both approaches suggested epistasis as a major contributor to metabolite heterosis in Arabidopsis. A linear combination of metabolite levels was shown to significantly correlate with biomass heterosis ( r  = 0.62).  相似文献   

15.
Li ZK  Luo LJ  Mei HW  Wang DL  Shu QY  Tabien R  Zhong DB  Ying CS  Stansel JW  Khush GS  Paterson AH 《Genetics》2001,158(4):1737-1753
To understand the genetic basis of inbreeding depression and heterosis in rice, main-effect and epistatic QTL associated with inbreeding depression and heterosis for grain yield and biomass in five related rice mapping populations were investigated using a complete RFLP linkage map of 182 markers, replicated phenotyping experiments, and the mixed model approach. The mapping populations included 254 F(10) recombinant inbred lines derived from a cross between Lemont (japonica) and Teqing (indica) and two BC and two testcross hybrid populations derived from crosses between the RILs and their parents plus two testers (Zhong 413 and IR64). For both BY and GY, there was significant inbreeding depression detected in the RI population and a high level of heterosis in each of the BC and testcross hybrid populations. The mean performance of the BC or testcross hybrids was largely determined by their heterosis measurements. The hybrid breakdown (part of inbreeding depression) values of individual RILs were negatively associated with the heterosis measurements of their BC or testcross hybrids, indicating the partial genetic overlap of genes causing hybrid breakdown and heterosis in rice. A large number of epistatic QTL pairs and a few main-effect QTL were identified, which were responsible for >65% of the phenotypic variation of BY and GY in each of the populations with the former explaining a much greater portion of the variation. Two conclusions concerning the loci associated with inbreeding depression and heterosis in rice were reached from our results. First, most QTL associated with inbreeding depression and heterosis in rice appeared to be involved in epistasis. Second, most ( approximately 90%) QTL contributing to heterosis appeared to be overdominant. These observations tend to implicate epistasis and overdominance, rather than dominance, as the major genetic basis of heterosis in rice. The implications of our results in rice evolution and improvement are discussed.  相似文献   

16.
Seed vigor is an important characteristic of seed quality. In this study, one rice population of recombinant inbred lines (RILs) was used to determine the genetic characteristics of seed vigor, including the germination potential, germination rate, germination index and time for 50% of germination, at 4 (early), 5 (middle) and 6 weeks (late) after heading in two years. A total of 24 additive and 9 epistatic quantitative trait loci (QTL) for seed vigor were identified using QTL Cartographer and QTLNetwork program respectively in 2012; while 32 simple sequence repeat (SSR) markers associated with seed vigor were detected using bulked segregant analysis (BSA) in 2013. The additive, epistatic and QTL × development interaction effects regulated the dry maturity developmental process to improve seed vigor in rice. The phenotypic variation explained by each additive, epistatic QTL and QTL × development interaction ranged from 5.86 to 40.67%, 4.64 to 11.28% and 0.01 to 1.17%, respectively. The QTLs were rarely co-localized among the different maturity stages; more QTLs were expressed at the early maturity stage followed by the late and middle stages. Twenty additive QTLs were stably expressed in two years which might play important roles in establishment of seed vigor in different environments. By comparing chromosomal positions of these stably expressed additive QTLs with those previously identified, the regions of QTL for seed vigor are likely to coincide with QTL for grain size, low temperature germinability and seed dormancy; while 5 additive QTL might represent novel genes. Using four selected RILs, three cross combinations of seed vigor for the development of RIL populations were predicted; 19 elite alleles could be pyramided by each combination.  相似文献   

17.
Zhai J  Liu J  Liu B  Li P  Meyers BC  Chen X  Cao X 《PLoS genetics》2008,4(4):e1000056
Progress in epigenetics has revealed mechanisms that can heritably regulate gene function independent of genetic alterations. Nevertheless, little is known about the role of epigenetics in evolution. This is due in part to scant data on epigenetic variation among natural populations. In plants, small interfering RNA (siRNA) is involved in both the initiation and maintenance of gene silencing by directing DNA methylation and/or histone methylation. Here, we report that, in the model plant Arabidopsis thaliana, a cluster of approximately 24 nt siRNAs found at high levels in the ecotype Landsberg erecta (Ler) could direct DNA methylation and heterochromatinization at a hAT element adjacent to the promoter of FLOWERING LOCUS C (FLC), a major repressor of flowering, whereas the same hAT element in ecotype Columbia (Col) with almost identical DNA sequence, generates a set of low abundance siRNAs that do not direct these activities. We have called this hAT element MPF for Methylated region near Promoter of FLC, although de novo methylation triggered by an inverted repeat transgene at this region in Col does not alter its FLC expression. DNA methylation of the Ler allele MPF is dependent on genes in known silencing pathways, and such methylation is transmissible to Col by genetic crosses, although with varying degrees of penetrance. A genome-wide comparison of Ler and Col small RNAs identified at least 68 loci matched by a significant level of approximately 24 nt siRNAs present specifically in Ler but not Col, where nearly half of the loci are related to repeat or TE sequences. Methylation analysis revealed that 88% of the examined loci (37 out of 42) were specifically methylated in Ler but not Col, suggesting that small RNA can direct epigenetic differences between two closely related Arabidopsis ecotypes.  相似文献   

18.
19.
Shi J  Li R  Zou J  Long Y  Meng J 《PloS one》2011,6(7):e21645
Although much research has been conducted, the genetic architecture of heterosis remains ambiguous. To unravel the genetic architecture of heterosis, a reconstructed F(2) population was produced by random intercross among 202 lines of a double haploid population in rapeseed (Brassica napus L.). Both populations were planted in three environments and 15 yield-correlated traits were measured, and only seed yield and eight yield-correlated traits showed significant mid-parent heterosis, with the mean ranging from 8.7% (branch number) to 31.4% (seed yield). Hundreds of QTL and epistatic interactions were identified for the 15 yield-correlated traits, involving numerous variable loci with moderate effect, genome-wide distribution and obvious hotspots. All kinds of mode-of-inheritance of QTL (additive, A; partial-dominant, PD; full-dominant, D; over-dominant, OD) and epistatic interactions (additive × additive, AA; additive × dominant/dominant × additive, AD/DA; dominant × dominant, DD) were observed and epistasis, especially AA epistasis, seemed to be the major genetic basis of heterosis in rapeseed. Consistent with the low correlation between marker heterozygosity and mid-parent heterosis/hybrid performance, a considerable proportion of dominant and DD epistatic effects were negative, indicating heterozygosity was not always advantageous for heterosis/hybrid performance. The implications of our results on evolution and crop breeding are discussed.  相似文献   

20.
Selected nonpathogenic rhizobacteria with biological disease control activity are able to elicit an induced systemic resistance (ISR) response that is phenotypically similar to pathogen-induced systemic acquired resistance (SAR). Ten ecotypes of Arabidopsis thaliana were screened for their potential to express rhizobacteria-mediated ISR and pathogen-induced SAR against the leaf pathogen Pseudomonas syringae pv. tomato DC3000 (Pst). All ecotypes expressed SAR. However, of the 10 ecotypes tested, ecotypes RLD and Wassilewskija (Ws) did not develop ISR after treatment of the roots with nonpathogenic Pseudomonas fluorescens WCS417r bacteria. This nonresponsive phenotype was associated with relatively high susceptibility to Pst infection. The F1 progeny of crosses between the non-responsive ecotypes RLD and Ws on the one hand, and the responsive ecotypes Columbia (Col) and Landsberg erecta (Ler) on the other hand, were fully capable of expressing ISR and exhibited a relatively high level of basal resistance, similar to that of their WCS417r-responsive parent. This indicates that the potential to express ISR and the relatively high level of basal resistance against Pst are both inherited as dominant traits. Analysis of the F2 and F3 progeny of a Col x RLD cross revealed that inducibility of ISR and relatively high basal resistance against Pst cosegregate in a 3:1 fashion, suggesting that both resistance mechanisms are monogenically determined and genetically linked. Neither the responsiveness to WCS417r nor the relatively high level of basal resistance against Pst were complemented in the F1 progeny of crosses between RLD and Ws, indicating that RLD and Ws are both affected in the same locus, necessary for the expression of ISR and basal resistance against Pst. The corresponding locus, designated ISR1, was mapped between markers B4 and GL1 on chromosome 3. The observed association between ISR and basal resistance against Pst suggests that rhizobacteria-mediated ISR against Pst in Arabidopsis requires the presence of a single dominant gene that functions in the basal resistance response against Pst infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号