首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transglutaminase (TGase) is a family of enzymes that catalyzes cross-linking reaction between glutamine- and lysine residue of substrate proteins in several mammalian biological events. Substrate proteins for TGase and their physiological relevance have been still in research, continuously expanding. In this study, we have established a novel screening system that enables identification of cDNA sequence encoding favorable primary structure as a substrate for tissue-type transglutaminase (TGase 2), a multifunctional and ubiquitously expressing isozyme. By the screening, we identified several T7 phage clones that displayed substrate peptides for TGase 2 as a translated product from human brain cDNA library. Among the selected clones, the C-terminal region of IKAP, IkappaB kinase complex associated protein, appeared as a highly reactive substrate sequence for TGase 2. This system will open possibility of rapid identification of substrate sequences for transglutaminases at a genetic level.  相似文献   

2.
A novel strategy for site-specific immobilization of recombinant proteins was investigated using microbial transglutaminase (MTG). Alkaline phosphatase (AP) was selected as a model protein and tagged with a short peptide (MKHKGS) at the N-terminus to provide a reactive Lys residue for MTG. On the other hand, casein, a well-known substrate for MTG, was chemically attached onto a polyacrylic resin to provide reactive Gln residues for the enzymatic immobilization of the recombinant AP. As a result, we succeeded in MTG-mediated functional immobilization of the recombinant AP onto casein-coated polyacrylic resin. It was found that the immobilized AP prepared using MTG exhibited much higher specific activity than that prepared by chemical modification. Moreover, enzymatic immobilization gave an immobilized formulation with higher stability upon repeated use than that obtained by physical adsorption. Use of this ability of MTG in posttranslational protein modification will provide us with a benign, site-specific immobilization method for functional proteins.  相似文献   

3.
Transglutaminase-mediated site-specific and covalent immobilization of an enzyme to chemically modified agarose was explored. Using Escherichia coli alkaline phosphatase (AP) as a model, two designed specific peptide tags containing a reactive lysine (Lys) residue with different length Gly-Ser linkers for microbial transglutaminase (MTG) were genetically attached to N- or C-termini. For solid support, agarose gel beads were chemically modified with beta-casein to display reactive glutamine (Gln) residues on the support surface. Recombinant APs were enzymatically and covalently immobilized to casein-grafted agarose beads. Immobilization by MTG markedly depended on either the position or the length of the peptide tags incorporated to AP, suggesting steric constraint upon enzymatic immobilization. Enzymatically immobilized AP showed comparable catalytic turnover (k(cat)) to the soluble counterpart and comparable operational stability with chemically immobilized AP. These results indicate that attachment of a suitable specific peptide tag to the right position of a target protein is crucial for MTG-mediated formulation of highly active immobilized proteins.  相似文献   

4.
Transglutaminase 1 (TGase 1) is an essential enzyme for cornified envelope formation in stratified squamous epithelia. This enzyme catalyzes the cross-linking of glutamine and lysine residues in structural proteins in differentiating keratinocytes. To gain insight into the preferred substrate structure of TGase 1, we used a phage-displayed random peptide library to screen primary amino acid sequences that are preferentially selected by human TGase 1. The peptides selected as glutamine donor substrate exhibited a marked tendency in primary structure, conforming to the sequence: QxK/RpsixxxWP (where x and psi represent non-conserved and hydrophobic amino acids, respectively). Using glutathione S-transferase (GST) fusion proteins of the selected peptides, we identified several sequences as preferred substrates and confirmed that they were isozyme-specific. We generated GST-fused alanine mutants of the most reactive sequence (K5) to determine the residues that were critical for reactivity. Even in peptide form, K5 appeared to have high and specific reactivity as substrate. In situ analysis of mouse skin sections using fluorescence-conjugated K5 peptide resulted in detection of TGase 1 activity with high sensitivity, but no signal was detected in a TGase 1-null mouse. In conclusion, we were successful in generating a novel substrate peptide for sensitive detection of endogenous TGase 1 activity in the skin.  相似文献   

5.
Mammalian transglutaminase (TGase) catalyzes covalent cross-linking of peptide-bound lysine residues or incorporation of primary amines to limited glutamine residues in substrate proteins. Using an unbiased M13 phage display random peptide library, we developed a screening system to elucidate primary structures surrounding reactive glutamine residue(s) that are preferred by TGase. Screening was performed by selecting phage clones expressing peptides that incorporated biotin-labeled primary amine by the catalytic reactions of TGase 2 and activated Factor XIII (Factor XIIIa). We identified several amino acid sequences that were preferred as glutamine donor substrates, most of which have a marked tendency for individual TGases: TGase 2, QxPphiD(P), QxPphi, and QxxphiDP; Factor XIIIa, QxxphixWP (where x and phi represent a non-conserved and a hydrophobic amino acid, respectively). We further confirmed that the sequences were favored for transamidation using modified glutathione S-transferase (GST) for recombinant peptide-GST fusion proteins. Most of the fusion proteins exhibited a considerable increase in incorporation of primary amines over that of modified GST alone. Furthermore, we identified the amino acid sequences that demonstrated higher specificity and inhibitory activity in the cross-linking reactions by TGase 2 and Factor XIIIa.  相似文献   

6.
Microbial transglutaminase (TGase) from Streptomyces mobaraensis (MTG) has been used in many industrial applications because it effectively catalyzes the formation of covalent cross-linking between glutamine residues in various substrate proteins and lysine residues or primary amines. To better understand the sequence preference around the reactive glutamine residue by this enzymatic reaction, we screened preferred peptide sequences using a phage-displayed random peptide library. Most of the peptides identified contained a consensus sequence, which was different from those previously found for mammalian TGases. Of these, most sequences had a specific reactivity toward MTG when produced as a fusion protein with glutathione-S-transferase. Furthermore, the representative sequence was found to be reactive even in the peptide form. The amino acid residues in the sequence critical for the reactivity were further analyzed, and the possible interaction with the enzyme has been discussed in this paper.  相似文献   

7.
A large number of substrate proteins for tissue transglutaminase (TGase 2) have been identified in vivo and in vitro. Preference in primary sequence or secondary structure around the reactive glutamine residues in the substrate governs the reactivity for TGase 2. We established a screening system to identify preferable sequence as a glutamine-donor substrate using a phage-displayed peptide library. The results showed that several peptide sequences have higher reactivity and specificity to TGase 2 than those of preferable sequences previously reported. By analysis of the most reactive 12-amino acid sequence, T26 (HQSYVDPWMLDH), residues crucial to the enzymatic reaction were investigated. The following review summarizes the screening system and also the preference in substrate sequences that were obtained by this method and those previously reported.  相似文献   

8.
We isolated cDNA clones encoding a transglutaminase (TGase: EC 2.3.2.13) from a salmon (Onchorhynchus keta) cDNA library prepared from the liver. In the cDNA sequence combined, an open reading frame coding for a protein of 680 aa was found. The deduced sequence showed a considerable similarity (62.4%) to that of red sea bream TGase. By comparison of sequence similarity to other TGases, the structure of salmon TGase was like tissue type TGases, rather than membrane-associated type or plasma type TGases. As a structural feature of salmon TGase, 3 aa residues were substituted in the 25 aa sequence around the active site Cys residue, which is conserved among several tissue type TGases. The critical residues thought to form the catalytic-center triad (Cys272, His331, and Asp301) were found in the highly conserved region, but the region surrounding Tyr511, which corresponds to the residue participates in hydrogen-bond interactions of active center domain, was less similar to other TGases, except for red sea bream TGase. These findings suggests that the overall structure of fish TGase resembles tissue-type TGases, but has some unique structure.  相似文献   

9.
Maintaining activity of enzymes tethered to solid interfaces remains a major challenge in developing hybrid organic-inorganic devices. In nature, mammalian spermatozoa have overcome this design challenge by having glycolytic enzymes with specialized targeting domains that enable them to function while tethered to a cytoskeletal element. As a step toward designing a hybrid organic-inorganic ATP-generating system, we implemented a biomimetic site-specific immobilization strategy to tether two glycolytic enzymes representing different functional enzyme families: triose phosphoisomerase (TPI; an isomerase) and glyceraldehyde 3-phosphate dehydrogenase (GAPDHS; an oxidoreductase). We then evaluated the activities of these enzymes in comparison to when they were tethered via classical carboxyl-amine crosslinking. Both enzymes show similar surface binding regardless of immobilization method. Remarkably, specific activities for both enzymes were significantly higher when tethered using the biomimetic, site-specific immobilization approach. Using this biomimetic approach, we tethered both enzymes to a single surface and demonstrated their function in series in both forward and reverse directions. Again, the activities in series were significantly higher in both directions when the enzymes were coupled using this biomimetic approach versus carboxyl-amine binding. Our results suggest that biomimetic, site-specific immobilization can provide important functional advantages over chemically specific, but non-oriented attachment, an important strategic insight given the growing interest in recapitulating entire biological pathways on hybrid organic-inorganic devices.  相似文献   

10.
Glutathione S-transferase genetically fused with an affinity peptide tag, PS19 (RAFIASRRIKRP) having a specific affinity for a hydrophilic polystyrene (PS) surface, was preferentially immobilized on a hydrophilic PS (phi-PS) plate without suffering from interference by coexisting protein molecules. Furthermore, rabbit IgG chemically conjugated with a peptide, KPS19R10, in which (10)Lys in PS19 was replaced with Arg and one Lys residue was added at the N-terminus as a coupling site for glutaraldehyde, showed a higher immobilization affinity to the phi-PS plate than that conjugated with the PS19 peptide. On the basis of these findings, the use of a phi-PS plate and peptide tag-linked ligand proteins permitted a one-step or two-step enzyme-linked immunosorbent assay (ELISA) to be achieved, resulting in a substantial reduction in operational time compared with the conventional ELISA method using a hydrophobic PS (pho-PS) plate, while maintaining a high sensitivity. Furthermore, the sensitivity was increased to a greater extent compared to the conventional ELISA meihod when the one-step ELISA was applied to the detection of bovine insulin in a sandwich mode, due to the reduced number of washing and incubation steps. The method proposed here would be a versatile method for use in various ELISA techniques such as sandwich and competitive ELISAs using an antigen, an antibody and streptavidin that are genetically fused or chemically conjugated with the PS-specific affinity peptide as the ligand protein.  相似文献   

11.
An enzymatic method for covalent and site-specific immobilization of recombinant proteins on a plastic surface was explored. Using Escherichia coli alkaline phosphatase (AP) with a specific peptide tag (MKHKGS) genetically incorporated at the N-terminus as a model (NK-AP), microbial transglutaminase (MTG)-mediated protein immobilization was demonstrated. To generate a reactive surface for MTG, a 96-well polystyrene microtiter plate was physically coated with casein, a good MTG substrate. Successful immobilization of recombinant AP to the nanolayer of casein on the surface of the microtiter plate was verified by the detection of enzymatic activity. Since little activity was observed when wild-type AP was used, immobilization of NK-AP was likely directed by the specific peptide tag. When polymeric casein prepared by MTG was used as a matrix on the plate, the loading capacity of AP was increased about 2-fold compared to when casein was used as the matrix. Transglutaminase-mediated site-specific posttranslational modification of proteins offers one way of generating a variety of protein-based solid formulations for biotechnological applications.  相似文献   

12.
Chun H  Joo K  Lee J  Shin HC 《Biotechnology letters》2011,33(6):1227-1232
Enterokinase light chain (EKL) is a serine protease that recognizes Asp-Asp-Asp-Asp-Lys (D(4)K) sequence and cleaves the C-terminal peptide bond of the lysine residue. The utility of EKL as a site-specific cleavage enzyme is hampered by sporadic cleavage at other sites than the canonical D(4)K recognition sequence. In order to produce more site-specific EKL, we have generated several EKL mutants in E. coli with substitutions at Tyr174 and Lys99 using PDI (protein disulfide isomerase) fusion system. Substitution of Tyr174 by basic residues confers higher specificity on EKL. The production of EKL with higher specificity could widen the utility of EKL as a site-specific cleavage enzyme to produce various recombinant proteins with therapeutic or industrial values.  相似文献   

13.
Modification of proteins with small molecules is a widely used and powerful tool in biological research. Enzymatic approaches are particularly promising because substrate specificity allows for site-specific modification. Sortase A, a transpeptidase from Staphylococcus aureus, cleaves between the T and G residues in the sequence LPXTG, and subsequently links the carboxyl group of the T residue to an amino group of N-terminal glycine oligomers by a native peptide bond. Although Gram-positive bacteria have several kinds of sortases, there are few reports concerning their expression and substrate specificity. Here, we demonstrate site-specific protein modification with primary amine-containing molecules catalyzed by Lactobacillus plantarum sortase. Enhanced green fluorescent protein (EGFP) was employed as a model protein, and an amine-containing biotin molecule was site-specifically conjugated with LPQTSEQ-tagged EGFP. We developed a novel Lactobacillus plantarum sortase that has different substrate specificity compared to Staphylococcus aureus sortase. Amine-directed protein modification was achieved using the Lactobacillus plantarum sortase 'LPQTSEQ' sequence original recognition tag. Our results demonstrate a promising method for expanding the capabilities of site-specific protein-small molecule modification.  相似文献   

14.
DNA-binding proteins as site-specific nucleases   总被引:3,自引:0,他引:3  
DNA-binding proteins can be converted into site-specific nucleases by linking them to the chemical nuclease 1,10-phenanthroline-copper. This can be readily accomplished by converting a minor groove-proximal amino acid to a cysteine residue using site-directed mutagenesis and then chemically modifying the sulphydryl group with 5-iodoacetamido-1,10- phenanthroline-copper. These chimeric scission reagents can be used as rare cutters to analyse chromosomal DNA, to test predictions based on high-resolution nuclear magnetic resonance and X-ray crystal structures, and to locate binding sites of proteins within genomes.  相似文献   

15.
As part of an effort to develop nanoelectronic sensors for biological targets, we tested the potential to incorporate coiled coils as metallized, self-assembling, site-specific molecular linkers on carbon nanotubes (CNTs). Based on a previously conceived modular anchor-probe approach, a system was designed in which hydrophobic residues (valines and leucines) form the interface between the two helical peptide components. Charged residues (glutamates and arginines) on the borders of the hydrophobic interface increase peptide solubility, and provide stability and specificity for anchor-probe assembly. Two histidine residues oriented on the exposed hydrophilic exterior of each peptide were included as chelating sites for metal ions such as cobalt. Cysteines were incorporated at the peptide termini for oriented, thiol-mediated coupling to surface plasmon resonance (SPR) biosensor surfaces, gold nanoparticles or CNT substrates. The two peptides were produced by solid phase peptide synthesis using Fmoc chemistry: an acidic 42-residue peptide E42C, and its counterpart in the heterodimer, a basic 39-residue peptide R39C. The ability of E42C and R39C to bind cobalt was demonstrated by immobilized metal affinity chromatography and isothermal titration calorimetry. SPR biosensor kinetic analysis of dimer assembly revealed apparent sub-nanomolar affinities in buffers with and without 1 mM CoCl2 using two different reference surfaces. For device-oriented CNT immobilization, R39C was covalently anchored to CNT tips via a C-terminal cysteine residue. Scanning electron microscopy was used to visualize the assembly of probe peptide (E42C) N-terminally labeled with 15 nm gold nanoparticles, when added to the R39C-CNT surface. The results obtained open the way to develop CNT tip-directed recognition surfaces, using recombinant and chemically synthesized chimeras containing binding epitopes fused to the E42C sequence domain.  相似文献   

16.
Site-specific modification of peptides and proteins is an important area of basic research for preparation of well-defined biosensors and probes. The unique properties of aminooxy group present an opportunity for chemoselective site-specific immobilization of peptides to prepare well-defined biosensors. We have prepared FLAG peptide derivatives containing L-epsilon-aminooxylysine (L-epsilon-AOLys, 1a) and L-lysine units in their sequence at the C- and N-terminals via solid-phase synthesis. Site-specific modification of peptides through aminooxy group was demonstrated in the preparation of biosensors and selective conjugation in the preparation of biotinylated probes. Effect of the incorporation of L-epsilon-AOLys (1a) into the peptide sequence and its subsequent labeling on the FLAG epitopic character was measured using a surface plasmon resonance detector. It was found that incorporation of L-epsilon-AOLys (1a) into the FLAG peptide and site-specific immobilization through aminooxy group preserved the integrity of FLAG epitope.  相似文献   

17.
Jeon JH  Choi KH  Cho SY  Kim CW  Shin DM  Kwon JC  Song KY  Park SC  Kim IG 《The EMBO journal》2003,22(19):5273-5282
Transglutaminase 2 (TGase 2) is one of a family of enzymes that catalyze protein modification through the incorporation of polyamines into substrates or the formation of protein crosslinks. However, the physiological roles of TGase 2 are largely unknown. To elucidate the functions of TGase 2, we have searched for its interacting proteins. Here we show that TGase 2 interacts with E7 oncoprotein of human papillomavirus type 18 (HPV18) in vitro and in vivo. TGase 2 incorporates polyamines into a conserved glutamine residue in the zinc-binding domain of HPV18 E7 protein. This modification mediates the inhibition of E7's Rb binding ability. In contrast, TGase 2 does not affect HPV16 E7, due to absence of a glutamine residue at this polyamination site. Using E7 mutants, we demonstrate that TGase 2-dependent inhibition of HPV E7 function correlates with the presence of the polyamination site. Our results indicate that TGase 2 is an important cellular interfering factor and define a novel host-virus interaction, suggesting that the inability of TGase 2 to inactivate HPV16 E7 could explain the high prevalence of HPV16 in cervical cancer.  相似文献   

18.
A chemically modified glass surface displaying a glutamyl donor substrate peptide (Z-QG) was developed for microbial transglutaminase (MTG)-mediated immobilization of recombinant proteins tagged with an MTG-reactive lysine-containing substrate peptide (K-tag). To evaluate the surface modification conditions affecting the enzymatic protein immobilization, we employed an amino-modified 96-well glass plate as a base and prepared three types of glass surfaces displaying Z-QG. Validation of the Z-QG modified glass surfaces with recombinant enhanced green fluorescent proteins revealed that the insertion of a di(ethylene glycol) linker between the terminal Z-QG moiety and the base not only enhances enzymatic protein immobilization efficiency but also decreases nonselective protein adsorption. A bacterial alkaline phosphatase fused with a K-tag at the N terminus was also successfully immobilized to the designed glass surface, suggesting that the chemically modified glass surface displaying a spatially controlled glutamyl donor substrate is a potential platform for MTG-mediated fabrication of protein-based solid biomaterials.  相似文献   

19.
Transglutaminases (TGase; protein-glutamine: amine gamma-glutamyl-transferase) are a family of calcium-dependent acyl-transfer enzymes ubiquitously expressed in mammalian cells and responsible for catalyzing covalent cross-links between proteins or peptides. A series of recent crystal structures have revealed the overall architecture of TGase enzymes, and provided a deep look at their active site, calcium and magnesium ions, and the manner by which guanine nucleotides interact with this enzyme. These structures, backed with extensive biochemical studies, are providing new insights as to how access to the enzyme's active site may be gated through the coordinated changes in cellular calcium and magnesium concentrations and GTP/GDP. Calcium-activated TGase 3 can bind, hydrolyze, and is inhibited by GTP, despite lacking structural homology with other GTP binding proteins. A structure based sequence homology among the TGase enzyme family shows that these essential structural features are shared among other members of the TGase family.  相似文献   

20.
Reversed-phase HPLC (RP-HPLC) and electrospray ionization tandem mass spectrometry (ESI-MS/MS) were used to characterize the transglutaminase (TGase)-catalyzed dual modification of a peptide (EAQQIVM, named FibN) with monodansylcadaverine (MDC). The synthesized FibN peptide, which was derived from the N-terminal sequence of fibronectin, was used as the substrate for a guinea pig liver TGase (G-TGase). The time course of incorporation of MDC into FibN, detected by RP-HPLC, indicated two separate fluorescent product peaks. ESI-MS analysis of the isolated fractions indicated that products represented MDC-incorporated FibN molecules in molar ratios of 1:1 ((MDC)-FibN) and 2:1 ((MDC)2-FibN). A sequence analysis of MDC-FibN, using ESI-MS/MS, showed that the first modified residue in FibN was mainly Gln3. The kinetic analysis of MDC incorporation suggested that dual incorporation would occur by mainly one route. A one-dimensional 1H NMR comparison of MDC-FibN and unmodified FibN suggested that the first incorporation of MDC at Gln3 altered the substrate reactivity of the Gln4 residue in FibN for the G-TGase-catalyzed reaction. Thus, a detailed analysis of the peptide products using RP-HPLC and ESI-MS/MS should provide a powerful tool for exploring the mechanism of the substrate requirements of TGases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号