首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Peptidyl arms extending from one protein domain to another protein domain mediate many important interactions in biology. A well-studied example of this type of protein-protein interaction occurs between the yeast homeodomain proteins, MAT alpha2 and MAT a1, which form a high-affinity heterodimer on DNA. The carboxyl-terminal arm extending from MAT alpha2 to MAT a1 has been proposed to produce an allosteric conformational change in the a1 protein that generates a very large increase in the DNA binding affinity of a1. Although early studies lent some support to this model, a more recent crystal structure determination of the free a1 protein argues against any allosteric change. This note presents a thermodynamic argument that accounts for the proteins' binding behavior, so that allosteric conformational changes are not required to explain the large affinity increase. The analysis presented here should be useful in analyzing binding behavior in other systems involving arm interactions.  相似文献   

5.
Two major DNA binding proteins of molecular weights 34,000 and 38,000 have been identified in the 30,000 g supernatant (S-30) fraction of rat thigh muscle extracts. The presence of 38 KD DNA binding protein in the muscle S-30 could be demonstrated only if Triton X-100 treated extracts were used for Afinity chromatography suggesting that this protein may be a membrane associated DNA binding protein. The 38 KD DNA binding protein differed from the 34 KD DNA binding protein also in its chromatographic behaviour in DE-52 columns in which the 38 KD protein was retained, while the 34 KD protein came out in the flow-through in an electrophoretically pure form. The 34 KD DNA binding protein can also be purified by precipitation with MgCl2. Incubation of 0 15 M NaCl eluates (containing the 38 KD and/or 34 KD DNA binding protein) in the presence of 100 mM Mg2+ resulted in the specific precipitation of the 34 KD protein. Prolonged incubation (30 days) of the 0.15 M NaCl eluates containing the two DNA binding proteins at 4°C led to the preferential degradation of the 34 KD DNA binding protein. Nitrocellulose filter binding assays indicated selective binding of purified 34 KD protein to ss DNA. Purified 34 KD DNA binding protein cleaved pBR 322 supercoiled DNA, and electrophoresis of the cleavage products in agarose gels revealed a major DNA band corresponding to the circular form of DNA.  相似文献   

6.
The DNA and protein sequences of single-stranded DNA binding proteins (SSBs) encoded by the plP71a, plP231a, and R64 conjugative plasmids have been determined and compared to Escherichia coli SSB and the SSB encoded by F-plasmid. Although the amino acid sequences of all of these proteins are highly conserved within the NH2-terminal two-thirds of the protein, they diverge in the COOH-terminal third region. A number of amino acid residues which have previously been implicated as being either directly or indirectly involved in DNA binding are conserved in all of these SSBs. These residues include Trp-40, Trp-54, Trp-88, His-55, and Phe-60. On the basis of these sequence comparisons and DNA binding studies, a role for Tyr-70 in DNA binding is suggested for the first time. Although the COOH-terminal third of these proteins diverges more than their NH2-terminal regions, the COOH-terminal five amino acid residues of all five of these proteins are identical. In addition, all of these proteins share the characteristic property of having a protease resistant, NH2-terminal core and an acidic COOH-terminal region. Despite the high degree of sequence homology among the plasmid SSB proteins, the F-plasmid SSB appears unique in that it was the only SSB tested that neither bound well to poly(dA) nor was able to stimulate DNA polymerase III holoenzyme elongation rates. Poly [d(A-T)] melting studies suggest that at least three of the plasmid encoded SSBs are better helix-destabilizing proteins than is the E. coli SSB protein.  相似文献   

7.
The interactions of long chain fatty acids (FA) with wild type (WT) fatty acid binding proteins (FABP) and engineered FABP mutants have been monitored to determine the equilibrium binding constants as well as the rate constants for binding and dissociation. These measurements have been done using the fluorescent probes, ADIFAB and ADIFAB2, that allow the determination of the free fatty acid (FFA) concentration in the reaction of FA with proteins and membranes. The results of these studies indicate that for WT proteins from adipocyte, heart, intestine, and liver, Kd values are in the nM range and affinities decrease with increasing aqueous solubility of the FA. Binding affinities for heart and liver are generally greater than those for adipocyte and intestine. Moreover, measurements of the rate constants indicate that binding equilibrium at 37øC is achieved within seconds for all FA and FABPs. These results, together with the level of serum (unbound) FFA, suggests a buffering action of FABPs that helps to maintain the intracellular concentration of FFA so that the flux of FFA between serum and cells occurs down a concentration gradient. Measurements of the temperature dependence of binding reveal that the free energy is predominately enthalpic and that the enthalpy of the reaction results from FA-FABP interactions within the binding cavity. The nature of these interactions were investigated by determining the thermodynamics of binding to engineered point mutants of the intestinal FABP. These measurements showed that binding affinities did not report accurately the changes in protein-FA interactions because changes in the binding entropy and enthalpy tend to compensate. For example, an alanine substitution for arginine 106 yields a 30 fold increase in binding affinity, because the loss in enthalpy due to the elimination of the favorable interaction between the FA carboxylate and Arg106, is more than compensated for by an increase in entropy. Thus understanding the effects of amino acid replacements on FA-FABP interactions requires measurements of enthalpy and entropy, in addition to affinity.  相似文献   

8.
Chemical modification of backbone structures has been an important strategy in designing oligonucleotides capable of improved antisense effects. However, altered backbone chemistry may also affect the binding of oligonucleotides to key cellular proteins, and thus may impact on the overall biological action of antisense agents. In this study we have examined the binding of oligonucleotides having four different backbone chemistries to single-strand binding protein (SSB), a protein having a key role in DNA repair and replication. The oligomers tested had the same sequence, while the internucleoside linkages were phosphodiester (PO), phosphorothioate (PS), phosphorodithioate (PS2), or methylphosphonate (MP). We found that both PS and PS2 oligomers bound to SSB with higher affinity than PO oligonucleotides, while MP oligonucleotides did not bind appreciably at the concentrations tested. Oligonucleotide length was also an important factor in binding to SSB, but sequence was less critical. These observations indicate that backbone chemistry is an important factor in interactions between oligonucleotides and critical cellular proteins, and thus may be a key determinant of the biological effects of antisense oligonucleotides. © 1997 John Wiley & Sons, Ltd.  相似文献   

9.
植物几丁质结合蛋白及几丁质结合域特征和作用   总被引:5,自引:0,他引:5  
对植物中的几丁质结合蛋白类型及各类的初级结构进行了总结,并对其所含的几丁质结合域的特征,功能及其作用进行了简述。  相似文献   

10.
11.
A protein microarray based on DNA microarray platform was developed to identify protein-protein interactions in vitro. The conventional DNA chip surface by 156-bp PCR product was prepared for a substrate of protein microarray. High-affinity sequence-specific DNA binding domain, GAL4 DNA binding domain, was introduced to the protein microarray as fusion partner of a target model protein, enhanced green fluorescent protein. The target protein was oriented immobilized directly on the DNA chip surface. Finally, monoclonal antibody of the target protein was used to identify the immobilized protein on the surface. This study shows that the conventional DNA chip can be used to make a protein microarray directly, and this novel protein microarray can be applicable as a tool for identifying protein-protein interactions.  相似文献   

12.
Electrophoretic mobility shift assays reveal that HeLa neuclear proteins bind fast and with measurable affinity to target DNAs containing mixed simple repetitive (gt)n(ga)m stretches. Preincubation of the proteins at elevated temperature prevents the formation of the major DNA/protein complex in favour of several distinct assemblies. A similar pattern of retarded bands was observed employing higher salt concentrations in binding reaction. Thus conformational changes of different proteins appear to influence the complex rather than alternating DNA structures. Separation of the total nuclear extract into a water soluble and an insoluble protein fraction leads to a complete loss of target DNA bindinlg capability of the fractions. The binding capacity is restored by combining the two fractions suggesting that at least two protein components are necessary to form a complex with the target sequence. The proteins can be differentiated into head sensitive, water soluble and temporary stable, water insoluble, respectively. Furthermore, specifically binding polypeptides are not detectable by Southwestern analyses, probably because the essential components are separated during electrophoresis. DNase 1 footpoint analyses yield four different protein binding regions only on the (gt)n(ga)m harbouring strand. The footprints cover larger portions of the mixed simple repeat in addition to a portion 5′ of the (gt)n part. Hence at lealst two nuclear protein components of unknown biological function have to be present simultaneously to protect preferentially the (gt)n(ga)m-containing strand intron 2 in HLA-DRB genes  相似文献   

13.
14.
Zakrzewska K 《Biopolymers》2003,70(3):414-423
The formation of protein-DNA complexes often involves deformation of the DNA double helix. We have calculated the energy necessary to produce this deformation in 71 crystallographically determined complexes, using internal coordinate energy optimization with the JUMNA program and a generalized Born continuum solvent treatment. An analysis of the data allows deformation energy to be interpreted in terms of both local and global structural changes. We find that, in the majority of complexes, roughly 60% of the deformation energy corresponds to backbone distortion. It is also found that large changes in stacking and pairing energies are often compensated for by other, longer range, stabilizing factors. Some deformations, such as base opening, can be large, but only-produce local energetic effects. In terms of backbone distortions, the angle alpha, most often involved in alphagamma transitions, makes the most significant energetic contribution. This type of transition is twice as costly as those involving beta, or coupled epsilonzeta changes. Sugar amplitude changes are also energetically significant, in contrast to changes in phase angles.  相似文献   

15.
Interaction between metabotropic glutamate receptor 7 and alpha tubulin   总被引:1,自引:0,他引:1  
Metabotropic glutamate receptors (mGluRs) mediate a variety of responses to glutamate in the central nervous system. A primary role for group-III mGluRs is to inhibit neurotransmitter release from presynaptic terminals, but the molecular mechanisms that regulate presynaptic trafficking and activity of group-III mGluRs are not well understood. Here, we describe the interaction of mGluR7, a group-III mGluR and presynaptic autoreceptor, with the cytoskeletal protein, alpha tubulin. The mGluR7 carboxy terminal (CT) region was expressed as a GST fusion protein and incubated with rat brain extract to purify potential mGluR7-interacting proteins. These studies yielded a single prominent mGluR7 CT-associated protein of 55 kDa, which subsequent microsequencing analysis revealed to be alpha tubulin. Coimmunoprecipitation assays confirmed that full-length mGluR7 and alpha tubulin interact in rat brain as well as in BHK cells stably expressing mGluR7a, a splice variant of mGluR7. In addition, protein overlay experiments showed that the CT domain of mGluR7a binds specifically to purified tubulin and calmodulin, but not to bovine serum albumin. Further pull-down studies revealed that another splice variant mGluR7b also interacts with alpha tubulin, indicating that the binding region is not localized to the splice-variant regions of either mGluR7a (900-915) or mGluR7b (900-923). Indeed, deletion mutagenesis experiments revealed that the alpha tubulin-binding site is located within amino acids 873-892 of the mGluR7 CT domain, a region known to be important for regulation of mGluR7 trafficking. Interestingly, activation of mGluR7a in cells results in an immediate and significant decrease in alpha tubulin binding. These data suggest that the mGluR7/alpha tubulin interaction may provide a mechanism to control access of the CT domain to regulatory molecules, or alternatively, that this interaction may lead to morphological changes in the presynaptic membrane in response to receptor activation.  相似文献   

16.
Abstract The nucleoid protein composition, the enhancement of DNA electrophoretic mobility, the toroidal wrapping and the helical period of DNA complexed with nucleoid proteins from species within the archaeal kingdom Euryarchaeota was shown to contrast with the composition and properties of nucleoid proteins from Sulfolobus solfataricus , a member of the archaeal kingdom Crenarchaeota. This result was seen to support the hypothesis that archaeal histones with homology to the eukaryal hi stone consensus are a diagnostic feature of the Euryarchaeota.  相似文献   

17.
Based on the analysis of the mechanism of ligand transfer to membranes employing in vitro methods, Fatty Acid Binding Protein (FABP) family has been divided in two subgroups: collisional and diffusional FABPs. Although the collisional mechanism has been well characterized employing in vitro methods, the structural features responsible for the difference between collisional and diffusional mechanisms remain uncertain. In this work, we have identified the amino acids putatively responsible for the interaction with membranes of both, collisional and diffusional, subgroups of FABPs. Moreover, we show how specific changes in FABPs’ structure could change the mechanism of interaction with membranes. We have computed protein–membrane interaction energies for members of each subgroup of the family, and performed Molecular Dynamics simulations that have shown different configurations for the initial interaction between FABPs and membranes. In order to generalize our hypothesis, we extended the electrostatic and bioinformatics analysis over FABPs of different mammalian genus. Also, our methodological approach could be used for other systems involving protein–membrane interactions.  相似文献   

18.
19.
Glycine receptors (GlyRs) are ligand-gated chloride channel proteins composed of alpha- and beta-subunits. GlyRs are located to and anchored at postsynaptic sites by the receptor-associated protein gephyrin. Previous work from our laboratory has identified a core motif for gephyrin binding in the cytoplasmic loop of the GlyR beta-subunit. Here, we localized amino acid residues implicated in gephyrin binding by site-directed mutagenesis. In a novel transfection assay, a green fluorescent protein-gephyrin binding motif fusion protein was used to monitor the consequences of amino acid substitutions for beta-subunit interaction with gephyrin. Only multiple, but not single, replacements of hydrophobic side chains abolished the interaction between the two proteins. Our data are consistent with gephyrin binding being mediated by the hydrophobic side of an imperfect amphipathic helix.  相似文献   

20.
Two temperature-sensitive mutations in the hsdS gene, which encodes the DNA specificity subunit of the type IA restriction-modification system EcoKI, designated Sts1 (Ser(340)Phe) and Sts2 (Ala(204)Thr) had a different impact on restriction-modification functions in vitro and in vivo. The enzyme activities of the Sts1 mutant were temperature-sensitive in vitro and were reduced even at 30 degrees C (permissive temperature). Gel retardation assays revealed that the Sts1 mutant had significantly decreased DNA binding, which was temperature-sensitive. In contrast the Sts2 mutant did not show differences from the wild-type enzyme even at 42 degrees C. Unlike the HsdSts1 subunit, the HsdSts2 subunit was not able to compete with the wild-type subunit in assembly of the restriction enzyme in vivo, suggesting that the Sts2 mutation affects subunit assembly. Thus, it appears that these two mutations map two important regions in HsdS subunit responsible for DNA-protein and protein-protein interactions, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号