首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The efficiency of translation of alfalfa mosaic virus (AMV) RNA 4, barley alpha-amylase (B alpha A) mRNA, and two chimeric mRNAs, AMV 4-B alpha A and B alpha A-AMV 4 (in which the 5' leader sequences of the two mRNAs were interchanged), was measured in an S30 extract from wheat germ and a fractionated system from wheat germ in which translation could be made dependent upon initiation factor (eIF) 3, 4A, 4F, or 4G. In the S30 system, AMV RNA 4 and the chimeric mRNA AMV 4-B alpha A are translated much more efficiently than B alpha A mRNA and the chimeric mRNA B alpha A-AMV 4. When the S30 system was supplemented with high amounts of purified eIF-3, eIF-4A, eIF-4F, and eIF-4G, B alpha A and B alpha A-AMV 4 mRNAs were translated as efficiently as AMV RNA 4 and AMV 4-B alpha A mRNA. These findings indicated that the mRNAs containing the B alpha A leader sequence required higher amounts of one or more of the initiation factors (eIF-3, eIF-4A, eIF-4F, and eIF-4G) for efficient translation. Determination of the amounts of the initiation factors required for translation in the fractionated system showed that AMV RNA 4 required 2-4-fold lower amounts of eIF-3, eIF-4A, eIF-4F, and eIF-4G than did B alpha A mRNA. Replacement of the B alpha A leader sequence with that of AMV RNA 4 decreased the amounts of eIF-4A, eIF-4G, and eIF-3 required, but did not affect the amount of eIF-4F required. Replacement of the AMV RNA 4 leader sequence with that of B alpha A mRNA increased the amounts of eIF-4F, eIF-4G, and eIF-3 required, but did not affect the amount of eIF-4A required. These data strongly suggest that the amounts of the factors required are affected not only by the 5' leader itself but also by interactions between the 5' leader and a region(s) of the mRNA 3' to the initiation codon.  相似文献   

3.
Using anther-derived rice (Oryza sativa L.) cell-suspension cultures, we have identified an 18-kD protein that is posttranslationally modified by spermidine and is influenced by endogenous polyamine levels. The posttranslationally modified residue has been identified as the unusual amino acid hypusine [N[epsilon]-(4-amino-2-hydroxybutyl)lysine] by reverse-phase high-performance liquid chromatography and gas chromatography-mass-spectrometry analyses. Differential labeling of the protein with labeled amines provided evidence that the butylamine moiety of spermidine is the immediate precursor of the hypusine residue in the protein. The eukaryotic translation initiation factor 5A (eIF-5A) is the only known mammalian protein that undergoes a similar posttranslational modification with hypusine. The purified 18-kD protein co-electrophoreses with human translational initiation factor eIF-5A in both isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gels. The purified protein from rice stimulated methionyl-puromycin synthesis in vitro, indicating its functional similarity to mammalian eIF-5A. The results presented provide evidence that the posttranslationally modified 18-kD protein from rice containing hypusine is eIF-5A and suggest the conservation of hypusine-containing translation initiation factor eIF-5A in eukaryotes.  相似文献   

4.
Eukaryotic initiation factor 5A (eIF-5A, formerly known as eIF-4D) purified from human erythrocytes has been found to have a monomeric molecular weight between 17,500 and 18,000. In this study, using exclusion chromatography and analytical ultracentrifugation, we demonstrate that eIF-5A normally exists as a dimer in solution and appears to be capable of undergoing reversible association to form higher polymers.  相似文献   

5.
6.
A cDNA containing the complete genome of satellite tobacco necrosis virus (STNV) RNA was constructed and cloned into a plasmid vector containing the T7 polymerase promotor. A second clone containing the first 54 nucleotides from the 5' end, which includes the ribosome binding site, was also constructed. RNAs were transcribed from these plasmids (pSTNV1239 and pSTNV54) and tested for their ability to bind to wheat germ 40 S ribosomal subunits in the presence of wheat germ initiation factors eIF-4A, eIF-4F, eIF-4G, eIF-3, eIF-2, Met-tRNA, ATP, and guanosine 5'-(beta, gamma-imino)triphosphate (GMP-PNP). Maximal binding of the STNV RNA transcribed from pSTNV1239 is obtained only in the presence of all the initiation factors and ATP. In contrast, close to maximal binding of STNV RNA transcribed from pSTNV54 is obtained in the absence of eIF-4A, eIF-4F, eIF-4G, and ATP. A series of deletion clones from the 3' end of the STNV cDNA was prepared, and the requirements for binding to 40 S ribosomal subunits were determined. STNV RNAs containing more than 134 nucleotides from the 5' end require eIF-4A, eIF-4F, eIF-4G, and ATP for maximal binding to 40 S ribosomal subunits, whereas STNV RNAs containing 86 nucleotides or less no longer require ATP and these factors. These findings indicate that a region 3' to the initiation codon affects the requirements for eIF-4A, eIF-4F, eIF-4G, and ATP.  相似文献   

7.
8.
Deoxyhypusine synthase catalyzes the conversion of lysine to deoxyhypusine residue on the eukaryotic initiation factor 5A (eIF-5A) precursor using spermidine as the substrate. Subsequent hydroxylation of the deoxyhypusine residue completes hypusine formation on eIF-5A. Hypusine formation is one of the most specific polyamine-dependent biochemical events in eukaryotic cells. Although changes in polyamine metabolism have been demonstrated in human diploid fibroblasts during senescence (Chen and Chang, 1986, J. Cell. Physiol., 128:27–32.), it is unclear whether or not polyamine-dependent hypusine formation itself is an age-dependent biochemical event. In the present study, hypusine-forming activity was measured by a radiolabeling assay in cells whose polyamines have been depleted by prior treatment of α-difluoromethyl ornithine (DFMO). In addition, an in vitro cross-labeling assay was developed for simultaneous measurement of the deoxyhypusine synthase activity and protein substrate (eIF-5A precursor) amount. We showed that the hypusine-forming activity in low-passage presenescent IMR-90 cells [population doubling level (PDL) = 15–23, termed young cells] was prominently induced by serum whereas little or no hypusine-forming activity could be detected in late-passage senescent cells (PDL = 46–54, termed old cells). The striking difference in hypusine-forming activity between young and old cells was due to changes in both deoxyhypusine synthase activity and eIF-5A precursor amount in IMR-90 cells during senescence. However, Northern blot analysis showed no significant difference in the eIF-5A messenger RNA (mRNA) between young and old cells, suggesting that the age-dependent attenuation of eIF-5A precursor protein may be regulated at either translational or posttranslational level. J. Cell. Physiol. 170:248–254, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
真核生物起始因子5   总被引:1,自引:0,他引:1  
真核生物起始因子5(eIF-5)是一种重要的翻译起始因子,过去人们认为它只是GTP酶活化因子,催化eIF-2上的GTP水解,促进80 S起始复合体的形成.近年来人们发现它不仅可以催化eIF-2上的GTP水解,还参与eIF-3功能的发挥,与eIF-2、eIF-3同时结合,促进起始因子复合体的形成.  相似文献   

10.
真核细胞翻译官始因子eIF-5A(eukaryotic initiation factor 5A)是迄今发现的惟一含有特殊氨基酸hypusine残基的蛋白质,其具体生物学功能仍不明确。为了推进对其功能的研究,拟从结构生物学入手,对其结构进行核磁共振(NMR)结构解析。利用GST融合蛋白原核表达系统,将eIF-5A进行原核表达,经过优化表达与纯化条件,得到了高产率与高纯度的可溶性eIF-5A用以进行NMR测试:经过!1H-^15N HSQC NMR实验,发现其适合应用NMR方法进行结构解析,从而为溶液中eIF-5A三维构象的研究奠定了基础.  相似文献   

11.
A purification procedure is described for the initiation factors of protein synthesis from rabbit reticulocytes: (a) from the ribosomal wash and (b) from the postribosomal supernantant. A comparison is made between these preparations with respect to yield and specific activity. eIF-4A and eIF-4D occur mainly in the postribosomal supernatant; eIF-2, eIF-4C and eIF-5 are more evenly divided over both fractions, whereas eIF-1, eIF-3 and eIF-4B are found almost exclusively in the ribosomal wash. No significant difference in specific activity could be detected when factors from both sources were compared, with a possible exception of eIF-4A and eIF-4D.  相似文献   

12.
We have identified two isoforms of initiation factor 4A (eIF-4A) in maize root tips, with distinct isoelectric points and similar molecular mass (approximately 50 kDa). Both isoforms of maize eIF-4A cross-react with antibodies raised against wheat germ eIF-4A, and one of the maize proteins (higher pI isoform) comigrates with purified wheat germ eIF-4A on two-dimensional gels. The two maize eIF-4As were indistinguishable by comparative peptide fingerprint analysis, which also showed a very strong similarity between eIF-4A in maize roots and wheat germ. Maize eIF-4As copurify with eIF-4F and eIF-(iso)4F on a 7-methyl-GTP-Sepharose affinity column, indicating that they are part of the 5'-cap-binding complex. Two-dimensional gel electrophoresis and immunoblotting of proteins from 32P-labeled maize root tips revealed that the lower pI isoform of eIF-4A is phosphorylated. Two-dimensional phosphopeptide maps of trypsin-digested eIF-4A contained one principal phosphorylated fragment; phosphoamino acid analysis indicated phosphorylation of threonine. In oxygenated maize root tips, the ratio of phosphorylated to nonphosphorylated eIF-4A is approximately 0.2. This ratio increases to approximately 1 within 20 min following the onset of hypoxia, due to interconversion between the two maize eIF-4A isoforms. The hypoxia-induced phosphorylation of eIF-4A is discussed with respect to metabolic responses, and the translational control of gene expression, in hypoxic plant tissues.  相似文献   

13.
To gain insight into the role of the eukaryotic translation initiation factor, eIF-5A, we investigated the subcellular distribution of this protein in several cultured cell types and at different stages of the cell cycle using a highly potent monospecific polyclonal antibody to eIF-5A. Studies using indirect immunofluorescence and confocal microscopy in conjunction with subcellular fractionation demonstrate that eIF-5A is primarily localized in the cytoplasm of cells. This cytoplasmic location of eIF-5A is not significantly altered in different stages of the cell cycle and the subcellular distribution pattern of eIF-5A is not changed by viral oncogene transformation. Cell fractionation experiments identified two populations of eIF-5A in the cytoplasm, a soluble fraction and a fraction bound to internal membranes. By double immunofluorescence staining with an antibody against calnexin, a resident protein of the endoplasmic reticulum (ER), we demonstrate that the membrane-bound fraction of eIF-5A colocalizes with the ER and not with the cytoskeleton. Expression of Rev, a regulatory protein of human immunodeficiency virus type 1 (HIV-1), does not alter the subcellular distribution of endogenous eIF-5A in these cells. eIF-5A is detected in all tissues and cells examined including extracts prepared fromXenopusoocytes. Our results indicate that eIF-5A is a ubiquitous cytoplasmic protein and suggest that a site of eIF-5A function is likely to be in association with the ER.  相似文献   

14.
Summary The unusual amino acid hypusine [N -(4-amino-2-hydroxybutyl)lysine] is a unique component of one cellular protein, eukaryotic translation initiation factor 5A (eIF-5A, old terminology, eIF-4D). It is formed posttranslationally and exclusively in this protein in two consecutive enzymatic reactions, (i) modification of a single lysine residue of the eIF-5A precursor protein by the transfer of the 4-aminobutyl moiety of the polyamine spermidine to its-amino group to form the intermediate, deoxyhypusine [N -(4-aminobutyl)lysine] and (ii) subsequent hydroxylation of this intermediate to form hypusine. The amino acid sequences surrounding the hypusine residue are strictly conserved in all eukaryotic species examined, suggesting the fundamental importance of this amino acid throughout evolution. Hypusine is required for the activity of eIF-5Ain vitro. There is strong evidence that hypusine and eIF-5A are vital for eukaryotic cell proliferation. Inactivation of both of the eIF-5A genes is lethal in yeast and the hypusine modification appears to be a requirement for yeast survival (Schnier et al., 1991 [Mol Cell Biol 11: 3105–3114]; Wöhl et al., 1993 [Mol Gen Genet 241: 305–311]). Furthermore, inhibitors of either of the hypusine biosynthetic enzymes, deoxyhypusine synthase or deoxyhypusine hydroxylase, exert strong anti-proliferative effects in mammalian cells, including many human cancer cell lines. These inhibitors hold potential as a new class of anticancer agents, targeting one specific eukaryotic cellular reaction, hypusine biosynthesis.  相似文献   

15.
Full-length cDNA clones encoding deoxyhypusine synthase (DHS) and eucaryotic initiation factor 5A (eIF-5A) have been isolated from a cDNA expression library prepared from tomato leaves (Lycopersicon esculentum, cv. Match) exposed to environmental stress. DHS mediates the first of two enzymatic reactions that activate eIF-5A by converting a conserved lysine to the unusual amino acid, deoxyhypusine. Recombinant protein obtained by expressing tomato DHS cDNA in Escherichia coli proved capable of carrying out the deoxyhypusine synthase reaction in vitro in the presence of eIF-5A. Of particular interest is the finding that DHS mRNA and eIF-5A mRNA show a parallel increase in abundance in senescing tomato flowers, senescing tomato fruit, and environmentally stressed tomato leaves exhibiting programmed cell death. Western blot analyses indicated that DHS protein also increases at the onset of senescence. It is apparent from previous studies with yeast and mammalian cells that hypusine-modified eIF-5A facilitates the translation of a subset of mRNAs mediating cell division. The present study provides evidence for senescence-induced DHS and eIF-5A in tomato tissues that may facilitate the translation of mRNA species required for programmed cell death.  相似文献   

16.
A cap-binding protein complex (Edery et al. (1983) J. Biol. Chem. 258, 11398–11403) is shown here to stimulate preferentially the translation of endogenous α versus β globin mRNA in a rabbit reticulocyte lysate. Several initiation factors (eIF-2, eIF-3, eIF-4A, eIF-4B, eIF-4C, eIF-4E and eIF-5) and elongation factor 1 were found to have no such discriminatory effect. These results are in contrast to several previous reports and demonstrate that the only factor capable of relieving translational competition between α and β globin mRNAs is the cap-binding protein complex.  相似文献   

17.
Hypusine is formed through a spermidine-dependent posttranslational modification of eukaryotic initiation factor 5A (eIF-5A) at a specific lysine residue. The reaction is catalyzed by deoxyhypusine synthase and deoxyhypusine hydroxylase. eIF-5A is the only protein in eukaryotes and archaebacteria known to contain hypusine. Although both eIF-5A and deoxyhypusine synthase are essential genes for cell survival and proliferation, the precise biological function of eIF-5A is unclear. We have previously proposed that eIF-5A may function as a bimodular protein, capable of interacting with protein and nucleic acid (Liu, Y. P., Nemeroff, M., Yan, Y. P., and Chen, K. Y. (1997) Biol. Signals 6, 166-174). Here we used the method of systematic evolution of ligands by exponential enrichment (SELEX) to identify the sequence specificity of the potential eIF-5A RNA targets. The post-SELEX RNA obtained after 16 rounds of selection exhibited a significant increase in binding affinity for eIF-5A with an apparent dissociation constant of 1 x 10(-7) m. The hypusine residue was found to be critical for this sequence-specific binding. The post-SELEX RNAs shared a high sequence homology characterized by two conserved motifs, UAACCA and AAUGUCACAC. The consensus sequence was determined as AAAUGUCACAC by sequence alignment and binding studies. BLAST analysis indicated that this sequence was present in > 400 human expressed sequence tag sequences. The C terminus of eIF-5A contains a cold shock domain-like structure, similar to that present in cold shock protein A (CspA). However, unlike CspA, the binding of eIF-5A to either the post-SELEX RNA or the 5'-untranslated region of CspA mRNA did not affect the sensitivity of these RNAs to ribonucleases. These data suggest that the physiological significance of eIF-5A-RNA interaction depends on hypusine and the core motif of the target RNA.  相似文献   

18.
The effects of 5' proximal secondary structure in mRNA molecules on their translation and on their interaction with the eukaryotic initiation factors (eIF)-4F, eIF-4A, and eIF-4B have been examined. Secondary structures were generated in the 5' noncoding region of rabbit globin and reovirus mRNAs by means of hybridization with cDNA molecules. cDNAs hybridized to the first 15 bases downstream from the cap inhibited the translation of the mRNAs in both reticulocyte and wheat germ lysates. The degree of inhibition was directly related to the monovalent ion concentration and inversely related to reaction temperature. These hybrid structures also reduced the competitive ability of the messages. Hybrid structures beginning downstream from the first 15 bases did not inhibit the translation of beta-globin mRNA or reovirus s3 mRNA. None of the hybrid structures were detrimental to the interaction of the mRNAs with the 26-kDa cap binding protein of eIF-4F, as determined by chemical cross-linking assays. However, in the presence of ATP, hybrid structures immediately adjacent to the cap severely inhibited the cross-linking to the p46 subunit of eIF-4F or to additional eIF-4A or eIF-4B. In order to account for these observations, a two-step mechanism is proposed for the interaction of eIF-4F with the 5' end of an mRNA molecule. The first step involves a weak initial interaction of the p26 subunit with the cap. The second step requires the hydrolysis of ATP and results in the formation of a stable initiation factor-mRNA complex, which may involve eIF-4A and eIF-4B. This second step is inhibited by the presence of 5' proximal secondary structure. In any event, our results demonstrate that the effect of mRNA structure on translation rate depends strongly on its position with respect to the 5' end and that this effect is due at least in part to an inhibition of the action of initiation factors normally required for the unwinding of structure.  相似文献   

19.
Eukaryotic initiation factor (eIF)-5, isolated from rabbit reticulocyte lysates, is a monomeric protein of Mr = 58,000-62,000. Immunochemical methods were employed to identify eIF-5 in crude cell lysates. Antisera against purified denatured eIF-5 were prepared in rabbits and characterized by immunoblotting and immunoprecipitation techniques using native and denatured eIF-5 as antigens. Monospecific antibodies to denatured eIF-5 were affinity-purified using eIF-5 blotted onto aminophenylthioether paper. Rabbit reticulocytes, HeLa cells and mouse L cells were lysed directly into a denaturing buffer containing 3% sodium dodecyl sulfate. The denatured proteins were analyzed by polyacrylamide gel electrophoresis followed by immunoblotting with anti-eIF-5 antibodies. With each lysate, one major immunoreactive polypeptide was observed whose molecular weight corresponded to that of purified eIF-5 (Mr = 58,000-62,000). No degradation products or precursor forms of molecular weight higher than 62,000 were detected in any lysate. These results indicate that isolated eIF-5 is the same size as that found in crude lysates. Additional characterization of eIF-5 indicates that purified eIF-5 can be phosphorylated at serine residues in vitro by casein kinase II. Furthermore, in vitro phosphorylated eIF-5 retains full biological activity in catalyzing the joining of 60 S ribosomal subunits to a preformed 40 S ribosomal initiation complex to form an 80 S initiation complex. Based on its specific activity, we demonstrate that 1 pmol of rabbit reticulocyte eIF-5 mediates the formation of approximately 180 pmol of 80 S initiation complex under the conditions of in vitro initiation reactions.  相似文献   

20.
Three mammalian eukaryotic initiation factors (eIF) are required for the ATP-dependent binding of mRNA to the 40 S ribosomal subunit. These three factors, eIF-4A, eIF-4B, and eIF-4F, have also been isolated from wheat germ. Three assays were used to measure the ability of the wheat germ factors to interact with and/or substitute for the mammalian factors. Two assay systems were used to measure partial reactions involving the interaction of the three factors, ATP, and mRNA: 1) RNA-dependent ATP hydrolysis and 2) cross-linking of the factors to the 5' cap of oxidized mRNA. A third assay system was used to measure the ability of the factors to support initiation of protein synthesis. The results of the ATP hydrolysis and cross-linking experiments indicate that the wheat germ factors can interact with or substitute for the mammalian factors. Wheat germ eIF-4A appears to be functionally equivalent to mammalian eIF-4A. Wheat germ eIF-4B and eIF-4F appear to be isozymes possessing functions similar to mammalian eIF-4F. Wheat germ eIF-4B does not appear to be a functional equivalent to the mammalian eIF-4B. In a complete translation system from wheat germ, mammalian factors partially substitute for wheat germ factors, whereas the wheat germ factors are ineffective in the mammalian system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号