首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cell adhesion molecule E-cadherin has been implicated in maintaining the polarized phenotype of epithelial cells and suppression of invasiveness and motility of carcinoma cells. Na,K-ATPase, consisting of an alpha- and beta-subunit, maintains the sodium gradient across the plasma membrane. A functional relationship between E-cadherin and Na,K-ATPase has not previously been described. We present evidence that the Na,K-ATPase plays a crucial role in E-cadherin-mediated development of epithelial polarity, and suppression of invasiveness and motility of carcinoma cells. Moloney sarcoma virus-transformed Madin-Darby canine kidney cells (MSV-MDCK) have highly reduced levels of E-cadherin and beta(1)-subunit of Na,K-ATPase. Forced expression of E-cadherin in MSV-MDCK cells did not reestablish epithelial polarity or inhibit the invasiveness and motility of these cells. In contrast, expression of E-cadherin and Na,K-ATPase beta(1)-subunit induced epithelial polarization, including the formation of tight junctions and desmosomes, abolished invasiveness, and reduced cell motility in MSV-MDCK cells. Our results suggest that E-cadherin-mediated cell-cell adhesion requires the Na,K-ATPase beta-subunit's function to induce epithelial polarization and suppress invasiveness and motility of carcinoma cells. Involvement of the beta(1)-subunit of Na,K-ATPase in the polarized phenotype of epithelial cells reveals a novel link between the structural organization and vectorial ion transport function of epithelial cells.  相似文献   

2.
3.
The Na,K-ATPase, consisting of alpha- and beta-subunits, regulates intracellular ion homeostasis. Recent studies have demonstrated that Na,K-ATPase also regulates epithelial cell tight junction structure and functions. Consistent with an important role in the regulation of epithelial cell structure, both Na,K-ATPase enzyme activity and subunit levels are altered in carcinoma. Previously, we have shown that repletion of Na,K-ATPase beta1-subunit (Na,K-beta) in highly motile Moloney sarcoma virus-transformed Madin-Darby canine kidney (MSV-MDCK) cells suppressed their motility. However, until now, the mechanism by which Na,K-beta reduces cell motility remained elusive. Here, we demonstrate that Na,K-beta localizes to lamellipodia and suppresses cell motility by a novel signaling mechanism involving a cross-talk between Na,K-ATPase alpha1-subunit (Na,K-alpha) and Na,K-beta with proteins involved in phosphatidylinositol 3-kinase (PI3-kinase) signaling pathway. We show that Na,K-alpha associates with the regulatory subunit of PI3-kinase and Na,K-beta binds to annexin II. These molecular interactions locally activate PI3-kinase at the lamellipodia and suppress cell motility in MSV-MDCK cells, independent of Na,K-ATPase ion transport activity. Thus, these results demonstrate a new role for Na,K-ATPase in regulating carcinoma cell motility.  相似文献   

4.
Studies on several different types of carcinomas, with the notable exception of colon carcinoma, have shown that poorly differentiated tumors are frequently deficient in E-cadherin dependent cell-cell adhesion. In this study, we examined Ca2+-dependent cell-cell adhesion in colon carcinoma cell lines. Five poorly differentiated (Clone A, MIP 101, RKO, CCL 222, CCL 228) and four moderately-well differentiated (CX-1, CCL 235, DLD-2, CCL 187) colon carcinoma cell lines were assayed for their ability to form cell-cell aggregates and for their levels of E-cadherin expression. All of the poorly differentiated cell lines exhibited low levels of Ca2+-dependent cell-cell aggregation, in contrast to the moderately-well differentiated cell lines. Contrary to most previous studies, however, we observed that three of the five poorly differentiated cell lines examined expressed E-cadherin by FACS analysis and immunoprecipitation using an E-cadherin mAb. In fact, two of these cell lines expressed a 3- to 4-fold higher level of E-cadherin than that found in the moderately-well differentiated cell lines. mRNA levels for E-cadherin, as evaluated by both RT-PCR and Northern hybridization, corresponded to the levels of protein expression in each of the cell lines. Immunoprecipitation with an E-cadherin mAb, which is known to co-precipitate the catenins, demonstrated that the three poorly differentiated cell lines expressing E-cadherin did not co-precipitate α-catenin, although all of the moderately-well differentiated cell lines expressed both α- and β-catenin. RT-PCR confirmed the absence of the α-catenin mRNA from two of these cell lines. Stable expression of an α-catenin cDNA in one of the poorly differentiated cell lines lacking α-catenin expression resulted in a 5-fold increase in its level of Ca2+-dependent cell-cell aggregation, providing evidence that α-catenin is directly responsible for the loss of cell-cell adhesion in some cell lines. The α-catenin transfectants also exhibited a marked reduction in migration on collagen I. These data indicate that loss of α-catenin expression, as well as E-cadherin expression, can lead to a phenotype associated with poorly differentiated colon carcinomas.  相似文献   

5.
6.
7.
8.
9.
10.
Abstract E-cadherin expression is unusually regulated in epithelial ovarian carcinoma. It is not expressed in poorly cohesive ovarian surface epithelial (OSE) target cells, but is expressed in cohesive pre-malignant lesions and in highly cohesive, well-differentiated tumors where it is membrane associated, presumably in adherens junctions. E-cadherin expression is subsequently suppressed, or its function is disrupted, in late-stage invasive tumors. Here, we observed that increased E-cadherin expression in ovarian carcinoma cells was associated with increased E-cadherin promoter activity, increased adherens junction formation, decreased β-catenin signaling-dependent LEF-1 activity, and the generation of cohesive spheroids in basement membrane gel culture. Forced expression of wild-type E-cadherin in immortalized OSE cells initiated adherens junction formation, decreased LEF-1 activity, decreased the mesenchymal migration that is a characteristic of OSE cells that have been maintained in monolayer culture, and induced the formation of cohesive spheroids in basement membrane gels. Conversely, forced expression of a dominant-negative E-cadherin mutant in ovarian carcinoma cells disrupted adherens junctions, increased mesenchymal cell migration, and prevented spheroidal morphogenesis without altering LEF-1 signaling. Therefore, in addition to suppressing late-stage tumor progression, E-cadherin-mediated adherens junctions may also contribute to the initial emergence of a cohesive morphogenic phenotype that is a hallmark of differentiated epithelial ovarian carcinoma.  相似文献   

11.
Our recent study demonstrated that higher expression of N-myc downregulated gene 1 (NDRG1) is closely correlated with poor prognosis in gastric cancer patients. In this study, we asked whether NDRG1 has pivotal roles in malignant progression including metastasis of gastric cancer cells. By gene expression microarray analysis expression of NDRG1 showed the higher increase among a total of 3691 up-regulated genes in a highly metastatic gastric cancer cell line (58As1) than their parental low metastatic counterpart (HSC-58). The highly metastatic cell lines showed decreased expression of E-cadherin, together with enhanced expression of vimentin and Snail. This decreased expression of E-cadherin was restored by Snail knockdown in highly metastatic cell lines. We next established stable NDRG1 knockdown cell lines (As1/Sic50 and As1/Sic54) from the highly metastatic cell line, and both of these cell lines showed enhanced expression of E-cadherin and decreased expression of vimentin and Snail. And also, E-cadherin promoter-driven luciferase activity was found to be increased by NDRG1 knockdown in the highly metastatic cell line. NDRG1 knockdown in gastric cancer cell showed suppressed invasion of cancer cells into surround tissues, suppressed metastasis to the peritoneum and decreased ascites accumulation in mice with significantly improved survival rates. This is the first study to demonstrate that NDRG1 plays its pivotal role in the malignant progression of gastric cancer through epithelial mesenchymal transition.  相似文献   

12.
13.
14.
15.
16.
The majority of cell adhesion molecules are N-glycosylated, but the role of N-glycans in intercellular adhesion in epithelia remains ill-defined. Reducing N-glycan branching of cellular glycoproteins by swainsonine, the inhibitor of N-glycan processing, tightens and stabilizes cell-cell junctions as detected by a 3-fold decrease in the paracellular permeability and a 2-3-fold increase in the resistance of the adherens junction proteins to extraction by non-ionic detergent. In addition, exposure of cells to swainsonine inhibits motility of MDCK cells. Mutagenic removal of N-glycosylation sites from the Na,K-ATPase beta(1) subunit impairs cell-cell adhesion and decreases the effect of swainsonine on the paracellular permeability of the cell monolayer and also on detergent resistance of adherens junction proteins, indicating that the extent of N-glycan branching of this subunit is important for intercellular adhesion. The N-glycans of the Na,K-ATPase beta(1) subunit and E-cadherin are less complex in tight renal epithelia than in the leakier intestinal epithelium. The complexity of the N-glycans linked to these proteins gradually decreases upon the formation of a tight monolayer from dispersed MDCK cells. This correlates with a cell-cell adhesion-induced increase in expression of GnT-III (stops N-glycan branching) and a decrease in expression of GnTs IVC and V (promote N-glycan branching) as detected by real-time quantitative PCR. Consistent with these results, partial silencing of the gene encoding GnT-III increases branching of N-glycans linked to the Na,K-ATPase beta(1) subunit and other glycoproteins and results in a 2-fold increase in the paracellular permeability of MDCK cell monolayers. These results suggest epithelial cells can regulate tightness of cell junctions via remodeling of N-glycans, including those linked to the Na,K-ATPase beta(1)-subunit.  相似文献   

17.
18.
19.
The Na,K-ATPase function appears impaired in human heart failure with dilation; however little is known in animal model with idiopathic dilated cardiomyopathy. We studied Na,K-ATPase isoform composition and activity from cardiomyopathic hamsters of the MS 200 strain with pure dilated cardiomyopathy and compared them with those of healthy Syrian hamsters. 150-day-old male MS 200 Syrian hamsters (n = 16) and sex- and age-matched healthy Syrian hamsters (n = 15) were used. Antibodies specific for the three alpha-isoforms and against the beta1-isoform were used to study Na,K-ATPase isoform expression in ventricular myocardium. Na,K-ATPase activity was quantified in homogenate and membrane fractions. There was no significant change in left ventricular mass. Morphological examination revealed a decreased septum thickness in the dilated cardiomyopathy compared with control hamster. Idiopathic dilated cardiomyopathy in hamsters presented significantly reduced membrane alpha1 and beta1 abundances and reduced Na,K-ATPase activity (-35% vs. healthy control, p<0.05). Chronic heart failure had no effect on the Na,K-ATPase alpha2-subunit protein. We have demonstrated for the first time that dilated cardiomyopathy induces a specific reduction of both membrane alpha1- and beta1-isoform abundance and Na,K-ATPase activity in hamsters similar to those previously reported in human dilated heart failure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号