首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Intrauterine and postnatal longitudinal growth is controlled by a strong genetic component that regulates a complex network of endocrine factors integrating them with cellular proliferation, differentiation and apoptotic processes in target tissues, particularly the growth centers of the long bones. Here we report on a patient born small for gestational age (SGA) with severe, proportionate postnatal growth retardation, discreet signs of skeletal dysplasia, microcephaly and moyamoya disease. Initial genetic evaluation revealed a novel heterozygous IGF1R p.Leu1361Arg mutation affecting a highly conserved residue with the insulin-like growth factor type 1 receptor suggestive for a disturbance within the somatotropic axis. However, because the mutation did not co-segregate with the phenotype and functional characterization did not reveal an obvious impairment of the ligand depending major IGF1R signaling capabilities a second-site mutation was assumed. Mutational screening of components of the somatotropic axis, constituents of the IGF signaling system and factors involved in cellular proliferation, which are described or suggested to provoke syndromic dwarfism phenotypes, was performed. Two compound heterozygous PCNT mutations (p.[Arg585X];[Glu1774X]) were identified leading to the specification of the diagnosis to MOPD II. These investigations underline the need for careful assessment of all available information to derive a firm diagnosis from a sequence aberration.  相似文献   

2.
Fibroblast growth factor receptor-like 1 (FGFRL1) is a recently discovered transmembrane protein whose functions remain unclear. Since mutations in the related receptors FGFR1-3 cause skeletal malformations, DNA samples from 55 patients suffering from congenital skeletal malformations and 109 controls were searched for mutations in FGFRL1. One patient was identified harboring a frameshift mutation in the intracellular domain of this novel receptor. The patient showed craniosynostosis, radio-ulnar synostosis and genital abnormalities and had previously been diagnosed with Antley–Bixler syndrome. The effect of the FGFRL1 mutation was studied in vitro. In a reporter gene assay, the wild-type as well as the mutant receptor inhibited FGF signaling. However, the mutant protein differed from the wild-type protein in its subcellular localization. Mutant FGFRL1 was mainly found at the plasma membrane where it interacted with FGF ligands, while the wild-type protein was preferentially located in vesicular structures and the Golgi complex. Two motifs from the intracellular domain of FGFRL1 appeared to be responsible for this differential distribution, a tandem tyrosine based motif and a histidine-rich sequence. Deletion of either one led to the preferential redistribution of FGFRL1 to the plasma membrane. It is therefore likely that mutant FGFRL1 contributes to the skeletal malformations of the patient.  相似文献   

3.
4.
Heterogeneous mutations in the X-linked gene RPS6KA3, encoding the protein kinase RSK2, are responsible for Coffin-Lowry Syndrome. Here we have further studied a male patient with a highly suggestive clinical diagnosis of CLS but in whom no mutation was found by exon sequencing. Western blot analysis revealed a protein much larger than the normal expected size. Sequencing of the RSK2 cDNA, showed the presence of an in-frame tandem duplication of exons 17–20. The mutated RSK2 protein was found to be inactive in an in-vitro kinase assay. This event, which was the result of a homologous unequal recombination between Alu sequences, is the first reported large duplication of the RPS6KA3 gene. Our finding provides further evidence that immunoblot analysis, or a molecular assay capable to detect large genomic mutational events, is essential for patients with a highly suggestive CLS clinical diagnosis but remaining without mutation after exon sequencing. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Prolidase Deficiency (PD) is an autosomal recessive rare disorder caused by loss or reduction of prolidase enzymatic activity due to variants in the PEPD gene. PD clinical features vary among affected individuals: skin ulcerations, recurrent infections, and developmental delay are common. In this study, we describe a 16-year-old boy with a mild PD phenotype comprising chronic eczema, recurrent infections and elevated IgE. Whole exome sequencing analysis revealed three PEPD variants: c.575T>C p.(Leu192Pro) inherited from the mother, and c.692_694del p.(Tyr231del) and c.1409G>A p.(Arg470His), both inherited from the father. The variant p.(Tyr231del) has been previously characterized by high-resolution X-ray structure analysis as altering protein dynamics/flexibility. In order to study the effects of the other two prolidase variants, we performed site directed mutagenesis purification and crystallization studies. A high-resolution X-ray structure could only be obtained for the p.(Arg470His) variant, which showed no significant structural differences in comparison to WT prolidase. On the other hand, the p.(Leu192Pro) variant led to significant protein destabilization. Hence, we conclude that the maternal p.(Leu192Pro) variant was likely causally associated with the proband´s disease, together with the known pathogenic paternal variant p.(Tyr231del). Our results demonstrated the utility of exome sequencing to perform diagnosis in PD cases with mild phenotype.  相似文献   

6.
7.
8.
To date the only point mutations demonstrated to cause hemophilia are C to T transitions in TaqI sites. These were detected by screening Southern blots with cloned factor VIII probes. During the development of improved methods for detecting and analyzing mutations in genomic DNA, a novel G to C transversion mutation has been identified. This rare transversion results in a missense mutation, with proline being substituted for arginine in one of the active domains of the factor VIII molecule. The results suggest that the improved methods will be useful for detecting mutations in hemophilia as well as in other genetic disorders. In this method, specific DNA sequences in genomic DNA are amplified using oligonucleotide primers and a heat-resistant DNA polymerase. Mutations are detected and localized in the amplified samples by RNase A cleavage, and the altered region is then sequenced.  相似文献   

9.
Benign familial chronic pemphigus (Hailey–Hailey disease, HHD; MIM 169600) is a rare autosomal dominant hereditary disorder characterized by pruritic vesicles, painful erosions and scaly erythematous plaques at the sites of friction and flexures. Mutations in ATP2C1, which encoding the human secretory pathway Ca2+/Mn2+-ATPase protein 1 (hSPCA1), have been identified as the pathogenic gene of HHD. We found a novel, distinct, heterozygous mutation during study of a Chinese patient with HHD. We identified a C→T transition at nucleotide 1235 (p.Thr352IIe), in exon 13 of ATP2C1. This observation would be useful for genetic counseling and prenatal diagnosis for affected families and in expanding the repertoire of ATP2C1 mutations underlying HHD.  相似文献   

10.
We systematically investigated the molecular defects causing a primary LPL deficiency in a Japanese male infant (patient DI) with fasting hyperchylomicronemia (type I hyperlipoproteinemia) and in his parents. Patient DI had neither LPL activity nor immunoreactive LPL mass in the pre- and post-heparin plasma. The patient was a compound heterozygote for novel mutations consisting of a G-to-T transversion at the first nucleotide of exon 5 [+1 position of 3' acceptor splice site (3'-ass) of intron 4] and a T-to-C transition in the invariant GT at position +2 of the 5' donor splice site (5'-dss) of intron 8 (Int8/5'-dss/t(+2)c). The G-to-T transversion, although affecting the 11 nucleotide of the 3'-consensus acceptor splice site, resulted in a substitution of Gly(154) to Val (G154V; GG(716)C(-->)GTC). The mutant G154V LPL expressed in COS-1 cells was catalytically inactive and hardly released from the cells by heparin. The Int8/5'-dss/t(+2)c mutation inactivated the authentic 5' splice site of intron 8 and led to the utilization of a cryptic 5'-dss in exon 8 as an alternative splice site 133 basepairs upstream from the authentic splice site, thereby causing joining of a part of exon 8 to exon 9 with skipping of a 134-bp fragment of exon 8 and intron 8. These additional mutations in the consensus sequences of the 3' and 5' splice sites might be useful for better understanding the factors that are involved in splice site selection in vivo.  相似文献   

11.
Myeloperoxidase (MPO; EC 1.11.1.7) plays an important role in the host defense mechanism against microbial diseases. The neutrophil disorder characterized by the lack of MPO activity, is speculated to be associated with a decreased level of immunity. A Japanese patient was identified with complete MPO deficiency through automated hematography. Neutrophil function analysis revealed that MPO activity was significantly diminished with slightly elevated superoxide production. Mutational analysis of the patient revealed a glycine to serine substitution (G501S) in the exon 9 region. This mutation was not detected in the 96 healthy controls analyzed. The amino acid substitution found may be responsible for the failure of mature MPO production in the patient. This is the first case of MPO deficiency of G501S missense mutation identified in a Japanese patient.  相似文献   

12.
Bardet-Biedl syndrome(BBS) is a genetically heterogeneous disorder characterized by retinal dystrophy, polydactyly, obesity,developmental delay, and renal defects. At least 21 candidate BBS-associated genes(BBS1-19, NPHP1, and IFT172) have previously been identified, and all of them play important roles in ciliary function. Here, we collected a BBS pedigree with four members and performed whole-exome sequencing on the proband. The variants were analyzed and evaluated to confirm their pathogenicity. We found compound heterozygous variants(c.1192CT, p.Q398* and c.1175CT, p.T392M) in MKKS in both the siblings, and these were likely to be pathogenic variants. We also found a missense variant(c.2029GC, p.E677Q) in NPHP1 and a missense variant(c.2470CT, p.R824C) in BBS9 in the proband only, which are variants of uncertain significance. The compound heterozygous variants were probably responsible for the BBS phenotype in this Chinese pedigree and the missense mutations in NPHP1 and BBS9 might contribute to the mutation load.  相似文献   

13.
We have identified a previously unrecognized missense mutation in a patient with severe combined immunodeficiency due to adenosine deaminase deficiency (ADA-SCID). The mutation is a G646-to-A transition at a CG dinucleotide and predicts a glycine-to-arginine substitution at codon 216. Computer analysis of secondary structure predicts a major alteration with loss of a beta-pleated sheet in a highly conserved region of the protein. The basepair substitution also generates a new site for the restriction enzyme BstXI in exon 7 of the genomic DNA. Digestion of genomic DNA from the patient and from his parents revealed that he was homozygous for the mutation and that his mother and father were carriers. This mutation in homozygous form appears to be associated with very severe disease, since the patient had perinatal onset of clinical manifestations of SCID, the highest concentration of the toxic metabolite deoxyATP in nine patients studied, and a relatively poor immunologic response during the initial 2 years of therapy with polyethylene glycol-adenosine deaminase. Analysis of DNA from 21 additional patients with ADA-SCID and from 19 unrelated normals revealed that, while none of the normal individuals showed the abnormal restriction fragment, two of the 21 patients studied were heterozygous for the G646-to-A mutation.  相似文献   

14.
Acrodysostosis is an extremely rare disorder at birth, that is, characterized by skeletal dysplasia with short stature and midfacial hypoplasia, which has been reported to be caused by PDE4D and PRKAR1A gene mutations. Here, a Chinese boy with acrodysostosis, ventricular septal defect, and pulmonary hypertension was recruited for our study, and his clinical and biochemical characteristics were analyzed. A novel de novo heterozygous missense mutation (NM_001104631: c.2030A>C, p.Tyr677Ser) of the PDE4D gene was detected by whole exome sequencing and confirmed by Sanger sequencing. The c.2030A>C (p.Tyr677Ser) variant was located in exon 15 of the PDE4D gene, predicted to be damaging by a functional prediction program and shown to be highly conserved among many species. Further functional analysis showed that the p.Tyr677Ser substitution changes the function of the PDE4D protein, affects its subcellular localization in transfected cells, increases PDE4 activity in the regulation of cAMP signaling and affects cell proliferation. Our study identified a novel de novo PDE4D mutation in acrodysostosis of Chinese origin that not only contributes a deeper appreciation of the phenotypic characteristics of patients with PDE4D mutations but also expands the spectrum of PDE4D mutations.  相似文献   

15.
We describe a family with severe progressive cerebellar ataxia involving the trunk, the extremities, and speech. The proband, who has prominent atrophy of the cerebellum, shown by magnetic resonance imaging, was confined to a wheelchair at the age of 44 years. Two sons have episodes of vertigo and ataxia that are not responsive to acetazolamide. Quantitative eye-movement testing showed a consistent pattern of abnormalities localizing to the cerebellum. Genotyping suggested linkage to chromosome 19p, and SSCP showed an aberrant migrating fragment in exon 6 of the calcium-channel gene CACNA1A, which cosegregated with the disease. Sequencing of exon 6 identified a G-->A transposition in one allele, at nucleotide 1152, resulting in a predicted glycine-to-arginine substitution at codon 293. The CAG-repeat expansion associated with spinocerebellar ataxia 6 was not present in any family members. This family is unique in having a non-CAG-repeat mutation that leads to severe progressive ataxia. Since a great deal is known about the function of calcium channels, we speculate on how this missense mutation leads to the combination of clinical symptoms and signs.  相似文献   

16.
Mutations in the glucose-6-phosphatase (G6Pase) gene are responsible for glycogen storage disease type Ia (GSD Ia). By genotype analysis of the affected pedigree, we identified a novel type mutation in a Chinese patient with GSD Ia. Mutation analysis was performed for the coding region of G6Pase gene using DNA sequencing and TaqMan gene expression assay was used to further confirm the novel mutation. The proband was compound heterozygous for c.311A > T/c.648G > T. Our report expands the spectrum of G6Pase gene mutation in China.  相似文献   

17.
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CFTR serves as a cAMP-stimulated chloride channel in a wide range of epithelial tissues and its dysfunction is a hallmark of CF. Over 1400 mutations in the CFTR gene are known, but functional data exist only for a minority of the mutant channels. The aim of the present study was to functionally characterize a novel CFTR mutation identified in a patient with atypical CF. Full length sequencing of the patient's CFTR gene revealed a homozygous C to T transition at nucleotide position 331 (CCT>TCT), which results in a P67S amino acid substitution. Mutant and wild-type CFTR were heterologously expressed in Xenopus laevis oocytes. CFTR whole-cell currents were studied using the two-electrode voltage-clamp technique. Channel surface expression was assessed by a chemiluminescence assay. Expression of P67S-CFTR resulted in functional CFTR chloride channels. However, the CFTR chloride conductance observed in oocytes expressing the mutant channel averaged only 24% of that in oocytes expressing wild-type CFTR. Similarly, surface expression of the mutant channel was reduced. In contrast, the mutation did not alter the anion selectivity of the channel, and Western blot analysis indicated a similar protein expression level of mutant and wild-type CFTR. Our findings indicate that the P67S mutation reduces CFTR chloride channel function by reducing channel surface expression. The mild disease phenotype of the patient indicates that the residual function of the mutant channel is sufficient to prevent the development of severe CF symptoms.  相似文献   

18.
A type of lower motor neuron (LMN) disease inherited as autosomal recessive in Romney sheep was characterized with normal appearance at birth, but with progressive weakness and tetraparesis after the first week of life. Here, we carried out genome-wide homozygosity mapping using Illumina Ovine SNP50 BeadChips on lambs descended from one carrier ram, including 19 sheep diagnosed as affected and 11 of their parents that were therefore known carriers. A homozygous region of 136 consecutive single-nucleotide polymorphism (SNP) loci on chromosome 2 was common to all affected sheep and it was the basis for searching for the positional candidate genes. Other homozygous regions shared by all affected sheep spanned eight or fewer SNP loci. The 136-SNP region contained the sheep ATP/GTP-binding protein 1 (AGTPBP1) gene. Mutations in this gene have been shown to be related to Purkinje cell degeneration (pcd) phenotypes including ataxia in mice. One missense mutation c.2909G>C on exon 21 of AGTPBP1 was discovered, which induces an Arg to Pro substitution (p.Arg970Pro) at amino-acid 970, a conserved residue for the catalytic activity of AGTPBP1. Genotyping of this mutation showed 100% concordant rate with the recessive pattern of inheritance in affected, carrier, phenotypically normal and unrelated normal individuals. This is the first report showing a mutant AGTPBP1 is associated with a LMN disease in a large mammal animal model. Our finding raises the possibility of human patients with the same etiology caused by this gene or other genes in the same pathway of neuronal development.  相似文献   

19.
Lesch-Nyhan syndrome is caused by a deficiency of hypoxanthine phosphoribosyltransferase (HPRT) encoded by HPRT1. About 20% of patients have a deletion of HPRT1 and large deletions of HPRT1 are not always fully characterized at the molecular level. Here, we report on a case of Lesch-Nyhan syndrome with a 33-kb deletion involving exon 1 of HPRT1. This novel mutation is caused by a nonhomologous recombination between different classes of interspersed repetitive DNA.  相似文献   

20.
We have analyzed the exon 9, 13, 14, 15, and 16 of cardiac beta myosin heavy chain gene in 96 Japanese patients with hypertrophic cardiomyopathy by using PCR-DNA conformation polymorphism analysis. The analysis revealed a sequence variation of the exon 16 in one patient. The sequence variation of a G to C transversion with replacement of Asn by Lys at the codon 615 was confirmed by sequencing and by dot-blot hybridization with an allele-specific oligonucleotide probe. Because the missense mutation was found at the residue conserved through birds to humans, this mutation was suggested to be a cause of hypertrophic cardiomyopathy in the patient. This is the first report of a mutant cardiac beta myosin heavy chain gene in the Japanese population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号