首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During mineral growth in rat bone-marrow stromal cell cultures, gallium follows calcium pathways. The dominant phase of the cell culture mineral constitutes the poorly crystalline hydroxyapatite (HAP). This model system mimics bone mineralization in vivo. The structural characterization of the Ga environment was performed by X-ray absorption spectroscopy at the Ga K-edge. These data were compared with Ga-doped synthetic compounds (poorly crystalline hydroxyapatite, amorphous calcium phosphate and brushite) and with strontium-treated bone tissue, obtained from the same culture model. It was found that Sr2+ substitutes for Ca2+ in the HAP crystal lattice. In contrast, the replacement by Ga3+ yielded a much more disordered local environment of the probe atom in all investigated cell culture samples. The coordination of Ga ions in the cell culture minerals was similar to that of Ga3+, substituted for Ca2+, in the Ga-doped synthetic brushite (Ga-DCPD). The Ga atoms in the Ga-DCPD were coordinated by four oxygen atoms (1.90 Å) of the four phosphate groups and two oxygen atoms at 2.02 Å. Interestingly, the local environment of Ga in the cell culture minerals was not dependent on the onset of Ga treatment, the Ga concentration in the medium or the age of the mineral. Thus, it was concluded that Ga ions were incorporated into the precursor phase to the HAP mineral. Substitution for Ca2+ with Ga3+ distorted locally this brushite-like environment, which prevented the transformation of the initially deposited phase into the poorly crystalline HAP.Electronic Supplementary Material Supplementary material is available in the online version of this article at Abbreviations ACP amorphous calcium phosphate - DCPD dicalcium phosphate dihydrate (brushite) - HAP hydroxyapatite - ED-XRF energy dispersive X-ray fluorescence - EXAFS extended X-ray absorption fine structure - Ga-ACP gallium-doped amorphous calcium phosphate - Ga-DCPD gallium-doped brushite - Ga-HAP gallium-doped hydroxyapatite - XANES X-ray absorption near edge structure - XAS X-ray absorption spectroscopy - XRD X-ray diffraction  相似文献   

2.
The formation aspects of a polycrystalline self-assembled bioceramic leading to the nucleation of hard-tissue mineral from a supersaturated solution are discussed. Scanning electron imaging and surface-sensitive interrogations of the nucleated mineral indicated the presence of an intermediate amorphous layer encompassing a rather crystalline phase that formed on niobium oxide (Nb(2)O(5)) microstructures. The crystalline phase was identified from Raman spectroscopy as hydroxyapatite (HAP), while the phosphorous-rich amorphous layer is suggested to have the chemical form CaO-P(2)O(5). In addition, the mechanism favoring HAP nucleation is discussed in terms of the (0 0 2) and (0 0 1) diffraction planes of HAP and Nb(2)O(5), respectively. The small mismatch along several lattice dimensions strongly suggests epitaxy as a dominant mode in the heterogeneous nucleation of HAP. Furthermore, the effectiveness of this mode was shown to critically depend on the self-organization of the Nb(2)O(5) microstructures. Because nucleation does not appear to depend solely on the integrity of Nb(2)O(5) crystals, the self-organization of Nb(2)O(5) crystals also contributes significantly to HAP nucleation. Based on our results, we propose the organized arrangement of bioceramic crystals as a new mode for the bioinspiration of hydroxyapatite and other hard-tissue mineral.  相似文献   

3.
Phosphoproteins of the organic matrix of bone and dentin have been implicated as regulators of the nucleation and growth of the inorganic Ca-P crystals of vertebrate bones and teeth. One such protein identified in the dentin matrix is phosphophoryn (PP). It is highly acidic in nature because of a high content of aspartic acid and phosphate groups on serines. The 244-residue carboxyl-terminal domain of rat PP, predominantly containing the aspartic acid-serine repeats, has been cloned, and the corresponding protein has been expressed recombinantly in Escherichia coli. This portion of PP, named DMP2 (dentin matrix protein 2), is not phosphorylated by the bacteria and thus provided a means to study the function of the phosphate groups, the major post-translational modification of native PP. The recombinant DMP2 (rDMP2) possessed much lower calcium binding capacity than native PP. Small angle x-ray scattering experiments demonstrated that PP folds to a compact globular structure upon calcium binding, whereas rDMP2 maintained an unfolded structure. In vitro nucleation experiments showed that PP could nucleate plate-like apatite crystals in pseudophysiological buffer, whereas rDMP2 failed to mediate the transformation of amorphous calcium phosphate to apatite crystals under the same experimental conditions. Collagen binding experiments demonstrated that PP favors the formation of collagen aggregates, whereas in the presence of rDMP2 thin fibrils are formed. Overall these results suggested that the phosphate moieties in phosphophoryn are important for its function as a mediator of dentin biomineralization.  相似文献   

4.
EXAFS spectra have been recorded above the calcium K edge from bones of mice aged 3 days, 1 week, 1 month, 2 months and 7 months. Spectra indicated that the calcium ion environment in bone mineral changes during development. Results were compared with those obtained from amorphous calcium phosphate and a poorly crystalline hydroxyapatite matured from this amorphous calcium phosphate in the presence of water. Spectra from the older mice closely resembled those of the matured product but those from the younger mice were more like those from the freshly prepared amorphous calcium phosphate.  相似文献   

5.
During bone and dentin mineralization, the crystal nucleation and growth processes are considered to be matrix regulated. Osteoblasts and odontoblasts synthesize a polymeric collagenous matrix, which forms a template for apatite initiation and elongation. Coordinated and controlled reaction between type I collagen and bone/dentin-specific noncollagenous proteins are necessary for well defined biogenic crystal formation. However, the process by which collagen surfaces become mineralized is not understood. Dentin matrix protein 1 (DMP1) is an acidic noncollagenous protein expressed during the initial stages of mineralized matrix formation in bone and dentin. Here we show that DMP1 bound specifically to type I collagen, with the binding region located at the N-telopeptide region of type I collagen. Peptide mapping identified two acidic clusters in DMP1 responsible for interacting with type I collagen. The collagen binding property of these domains was further confirmed by site-directed mutagenesis. Transmission electron microscopy analyses have localized DMP1 in the gap region of the collagen fibrils. Fibrillogenesis assays further demonstrated that DMP1 accelerated the assembly of the collagen fibrils in vitro and also increased the diameter of the reconstituted collagen fibrils. In vitro mineralization studies in the presence of calcium and phosphate ions demonstrated apatite deposition only at the collagen-bound DMP1 sites. Thus specific binding of DMP1 and possibly other noncollagenous proteins on the collagen fibril might be a key step in collagen matrix organization and mineralization.  相似文献   

6.
M E Marsh 《Biochemistry》1989,28(1):346-352
The concomitant binding of calcium and inorganic phosphate ions by the highly phosphorylated rat dentin phosphophoryn (HP) was measured in the pH range of 7.4-8.5 by an ultrafiltration procedure. HP binds almost exclusively the triply charged PO4(3-) ion, and for each PO4(3-) ion bound, the protein binds about 1.5 additional Ca2+ ions. Therefore, the protein-mineral ion complex can be described as a protein with two different ligands, Ca2+ ions and calcium phosphate clusters having a stoichiometry of about Ca1.5PO4. Empirically the binding of calcium and phosphate can best be described as a function of a neutral ion activity product in which 2.5-10% of the phosphate is HPO4(2-). The stoichiometry of the bound clusters is similar to that of amorphous calcium phosphate, and it is clear that the protein does not sequester crystal embryos of octacalcium phosphate or hydroxyapatite. The protein-mineral ion complex is amorphous by electron diffraction analysis and does not catalyze the formation of a crystalline phase when aged in contact with its solution. About 15% of the bound phosphate is buried in protected domains, and it is stable with respect to dissociation for extended periods in phosphate-free calcium buffers. The buried mineral maintains the protein in an aggregated state even at calcium ion concentrations which are too low for the aggregation of unmineralized HP. In vivo HP should be ineffective in the nucleation of a crystalline mineral phase, if it is secreted in a mineralized aggregated state similar to casein and the bivalve phosphoprotein.  相似文献   

7.
Acidic amino acids, such as aspartic acid (L-Asp) and glutamic acid, are the primary bioactive molecules of the glycoprotein on the organic/inorganic interface of biomineralized tissues. In this study, the induction of chitosan film modified with L-Asp on the crystal growth of hydroxyapatite (HAP) was investigated by a novel in situ analysis approach, quartz crystal microbalance (QCM), associated with the dynamically structural and morphological characterization of precipitation products on various phases by X-ray diffraction (XRD), Fourier-transformed infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The natural chitosan exhibited no inducing ability on the crystal growth of HAP. However, the growth rate of induced HAP was dramatically accelerated by the L-Asp modification of chitosan film and increased with the increase of the concentration of L-Asp in the chitosan substrate. It was shown that the chelation of calcium ion with L-Asp provided a nucleation centre and the cluster nuclei was formed by adsorbing further PO(4)(3-), Ca(2+), and then HAP deposited on the original HAP coating in the supersaturated calcification solution (SCS). The developed method allows a kinetic evaluation of the induction of organic film on crystal nucleation and the growth of HAP in vitro.  相似文献   

8.
The most widely accepted hypothesis to account for maturational changes in the X-ray diffraction characteristics of bone mineral has been the 'amorphous calcium phosphate theory', which postulates that an initial amorphous calcium phosphate solid phase is deposited that gradually converts to poorly crystalline hydroxyapatite. Our studies of bone mineral of different ages by X-ray radial distribution function analysis and 31P n.m.r. have conclusively demonstrated that a solid phase of amorphous calcium phosphate does not exist in bone in any significant amount. 31P n.m.r. studies have detected the presence of acid phosphate groups in a brushite-like configuration. Phosphoproteins containing O-phosphoserine and O-phosphothreonine have been isolated from bone matrix and characterized. Tissue and cell culture have established that they are synthesized in bone, most likely by the osteoblasts. Physiochemical and pathophysiological studies support the thesis that the mineral and organic phases of bone and other vertebrate mineralized tissues are linked by the phosphomonester bonds of O-phosphoserine and O-phosphothreonine, which are constituents of both the structural organic matrix and the inorganic calcium phosphate crystals.  相似文献   

9.
Bone alkaline phosphatase with glycolipid anchor (GPI-bALP) from chick embryo femurs in a medium without exogenous inorganic phosphate, but containing calcium and GPI-bALP substrates, served as in vitro model of mineral formation. The mineralization process was initiated by the formation of inorganic phosphate, arising from the hydrolysis of a substrate by GPI-bALP. Several mineralization media containing different substrates were analysed after an incubation time ranging from 1.5 h to 144 h. The measurements of Ca/Pi ratio and infrared spectra permitted us to follow the presence of amorphous and noncrystalline structures, while the analysis of X-ray diffraction data allowed us to obtain the stoichiometry of crystals. The hydrolysis of phosphocreatine, glucose 1-phosphate, glucose 6-phosphate, glucose 1,6-bisphosphate by GPI-bALP produced hydroxyapatite in a manner similar to that of beta-glycerophosphate. Several distinct steps in the mineral formation were observed. Amorphous calcium phosphate was present at the onset of the mineral formation, then poorly formed hydroxyapatite crystalline structures were observed, followed by the presence of hydroxyapatite crystals after 6-12 h incubation time. However, the hydrolysis of either ATP or ADP, catalysed by GPI-bALP in calcium-containing medium, did not lead to the formation of any hydroxyapatite crystals, even after 144 h incubation time, when hydrolysis of both nucleotides was completed. In contrast, the hydrolysis of AMP by GPI-bALP led to the appearance of hydroxyapatite crystals after 12 h incubation time. The hydroxyapatite formation depends not only on the ability of GPI-bALP to hydrolyze the organic phosphate but also on the nature of substrates affecting the nucleation process or producing inhibitors of the mineralization.  相似文献   

10.
Bone is the most widespread mineralized tissue in vertebrates and its formation is orchestrated by specialized cells - the osteoblasts. Crystalline carbonated hydroxyapatite, an inorganic calcium phosphate mineral, constitutes a substantial fraction of mature bone tissue. Yet key aspects of the mineral formation mechanism, transport pathways and deposition in the extracellular matrix remain unidentified. Using cryo-electron microscopy on native frozen-hydrated tissues we show that during mineralization of developing mouse calvaria and long bones, bone-lining cells concentrate membrane-bound mineral granules within intracellular vesicles. Elemental analysis and electron diffraction show that the intracellular mineral granules consist of disordered calcium phosphate, a highly metastable phase and a potential precursor of carbonated hydroxyapatite. The intracellular mineral contains considerably less calcium than expected for synthetic amorphous calcium phosphate, suggesting the presence of a cellular mechanism by which phosphate entities are first formed and thereafter gradually sequester calcium within the vesicles. We thus demonstrate that in vivo osteoblasts actively produce disordered mineral packets within intracellular vesicles for mineralization of the extracellular developing bone tissue. The use of a highly disordered precursor mineral phase that later crystallizes within an extracellular matrix is a strategy employed in the formation of fish fin bones and by various invertebrate phyla. This therefore appears to be a widespread strategy used by many animal phyla, including vertebrates.  相似文献   

11.
Genesis of natural biocomposite-based materials, such as bone, cartilage, and teeth, involves interactions between organic and inorganic systems. Natural biopolymers, such as peptide motif sequences, can be used as a template to direct the nucleation and crystallization of hydroxyapatite (HA). In this study, a natural motif sequence consisting of 13 amino acids present in the first helix of osteocalcin was selected based on its calcium binding ability and used as substrate for nucleation of HA crystals. The acidic (acidic osteocalcin-derived peptide (OSC)) and amidic (amidic osteocalcin-derived peptide (OSN)) forms of this sequence were synthesized to investigate the effects of different C termini on the process of biomineralization. Electron microscopy analyses show the formation of plate-like HA crystals with random size and shape in the presence of OSN. In contrast, spherical amorphous calcium phosphate is formed in the presence of OSC. Circular dichroism experiments indicate conformational changes of amidic peptide to an open and regular structure as a consequence of interaction with calcium and phosphate. There is no conformational change detectable in OSC. It is concluded that HA crystal formation, which only occurred in OSN, is attributable to C-terminal amidation of a natural peptide derived from osteocalcin. It is also proposed that natural peptides with the ability to promote biomineralization have the potential to be utilized in hard tissue regeneration.  相似文献   

12.
Glucose-regulated protein 78 (GRP-78) is one of the many endoplasmic reticulum chaperone proteins that have been shown to possess multifunctional roles. We have previously demonstrated that GRP-78 functions as a receptor for dentin matrix protein 1 (DMP1) and is required for DMP1-mediated calcium release; that it is a secreted protein and can bind to type I collagen and DMP1 extracellularly and aid in the nucleation of calcium phosphate. We provide evidence in this study that tyrosine phosphorylation is required for DMP1/GRP-78-mediated calcium release in mesenchymal cells. We further demonstrate that GRP-78 is localized in the nucleus of mesenchymal cells and that the cell surface GRP-78 is not associated with the G-protein Gαq in mesenchymal cells. Results from this study show that during development of mineralized tissues, increased expression of GRP-78 can be observed in condensing cartilage and mesenchymal cells of the alveolar bone, endochondral bone and dental pulp. Additionally, we show that GRP-78 is present in the mineralizing matrices of teeth, bone and in the extracellular matrix of differentiating human marrow stromal cells and dental pulp stem cells. Collectively, our observations provide a new perspective on GRP-78 with respect to mineralized matrix formation.  相似文献   

13.
Hydroxyapatite (HAP) is an important biomedical material that is used for grafting osseous defects. It has an excellent bioactivity and biocompatibility properties. To isolate hydroxyapatite, pieces of cleaned cattle’s bone were heated at different temperature range from 400°C up to 1,200°C. A reasonable yield of 60.32% w/w HAP was obtained at temperature range from 1,000°C to 1,200°C. Fourier transform infrared spectra and the thermogravimetric measurement showed a clear removal of organic at 600°C as well as an excellent isolation of HAP from the bones which was achieved at 1,000–1,200°C. This was also confirmed from X-ray diffraction of bone sample heated at 1,200°C. The concentration ions were found to be sodium, potassium, lithium, zinc, copper, iron, calcium, magnesium, and phosphate present in bones within the acceptable limits for its role in the bioactivity property of HAP. Glucose powder was used as a porosifier. Glucose was novel and excellent as porogen where it was completely removed by heating, giving an efficient porosity in the used scaffolds. The results exhibited that the ceftriaxone drug release was increased with increasing the porosity. It was found that a faster, higher, and more regular drug release was obtained from the scaffold with a porosity of 10%.  相似文献   

14.
Xu H  Cao B  George A  Mao C 《Biomacromolecules》2011,12(6):2193-2199
Bioinspired mineralization is an innovative approach to the fabrication of bone biomaterials mimicking the natural bone. Bone mineral hydroxylapatite (HAP) is preferentially oriented with c-axis parallel to collagen fibers in natural bone. However, such orientation control is not easy to achieve in artificial bone biomaterials. To overcome the lack of such orientation control, we fabricated a phage-HAP composite by genetically engineering M13 phage, a nontoxic bionanofiber, with two HAP-nucleating peptides derived from one of the noncollagenous proteins, Dentin Matrix Protein-1 (DMP1). The phage is a biological nanofiber that can be mass produced by infecting bacteria and is nontoxic to human beings. The resultant HAP-nucleating phages are able to self-assemble into bundles by forming β-structure between the peptides displayed on their side walls. The β-structure further promotes the oriented nucleation and growth of HAP crystals within the nanofibrous phage bundles with their c-axis preferentially parallel to the bundles. We proposed that the preferred orientation resulted from the stereochemical matching between the negatively charged amino acid residues within the β-structure and the positively charged calcium ions on the (001) plane of HAP crystals. The self-assembly and mineralization driven by the β-structure formation represent a new route for fabricating mineralized fibers that can serve as building blocks in forming bone repair biomaterials and mimic the basic structure of natural bones.  相似文献   

15.
Dentin Matrix Protein 1 (DMP1), the essential noncollagenous proteins in dentin and bone, is believed to play an important role in the mineralization of these tissues, although the mechanisms of its action are not fully understood. To gain insight into DMP1 functions in dentin mineralization we have performed immunomapping of DMP1 in fully mineralized rat incisors and in vitro calcium phosphate mineralization experiments in the presence of DMP1. DMP1 immunofluorescene was localized in peritubular dentin (PTD) and along the dentin-enamel boundary. In vitro phosphorylated DMP1 induced the formation of parallel arrays of crystallites with their c-axes co-aligned. Such crystalline arrangement is a hallmark of mineralized collagen fibrils of bone and dentin. Interestingly, in DMP1-rich PTD, which lacks collagen fibrils, the crystals are organized in a similar manner. Based on our findings we hypothesize, that in vivo DMP1 controls the mineral organization outside of the collagen fibrils and plays a major role in the mineralization of PTD.  相似文献   

16.
Biomimetic collagen/hydroxyapatite scaffolds have been prepared by microwave assisted co-titration of phosphorous acid-containing collagen solution and calcium hydroxide-containing solution. The resultant scaffolds have been characterised with respect to their mechanical properties, composition and microstructures. It was observed that the in situ precipitation process could combine collagen fibril formation and hydroxyapatite (HAp) formation in one process step. Collagen fibrils guided hydroxyapatite precipitation to form bone-mimic collagen/hydroxyapatite composite containing both intrafibrillar and interfibrillar hydroxyapatites. The mineral phase was determined as low crystalline calcium-deficient hydroxyapatite with calcium to phosphorus ratio (Ca/P) of 1.4. The obtained 1% (collagen/HAp = 75/25) scaffold has a porosity of 72% and a mean pore size of 69.4 ~tm. The incorporation of hydroxyapatite into collagen matrix improved the mechanical modulus of the scaffold significantly. This could be attributed to hydroxyapatite crystallites in collagen fibrils which restricted the deformation of the collagen fibril network, and the load transfer of the collagen to the higher modulus mineral component of the composite.  相似文献   

17.
Milk calcium salt solution was prepared by the following procedures using casein phosphopeptides (CPP). To CPP solution, 1 M citric acid, 1 M CaCl2 and 1 M K2HPO4 were added with stirring, while adjusting the pH to 6.7. The prepared solution was left for 12 hr at 25 degrees C and then used for subsequent experiments, or lyophilized. The concentrations of organic phosphate of CPP, calcium, inorganic phosphate, and citrate in the typical milk salt solution were 7, 30, 22, and 10 mM, respectively, which were close to those in bovine milk. The lyophilized sample was easily dissolved in water. No crystal structure of hydroxyapatite was shown in the lyophilized milk calcium salts by X-ray diffraction analysis, although the pattern of KCl crystal was observed. The X-ray diffraction pattern of commercial whey mineral, which was prepared by precipitation at alkaline pH from rennet whey, was similar to that of hydroxyapatite. It was confirmed by high-performance gel chromatographic analysis that the form of calcium phosphate in the milk calcium salts was similar to that of casein micelles.  相似文献   

18.
Mineralization of tooth dentin (the deposition of hydroxyapatite crystals in and around collagen type I fibers of the extracellular matrix) requires the involvement of several genes, among them the gene coding for the dentin matrix protein 1, DMP1. We determined the exon–intron organization of the cattle DMP1 gene and used this information to amplify by the polymerase chain reaction homologous gene fragments from the genomic DNA of two species of metatherian (marsupial) mammals and one prototherian (monotreme) species. The translated proto- and metatherian protein sequences are highly divergent from the eutherian sequences but retain the general characteristics of the DMP1 (high acidity, serine-richness, multiple glycosylation sites, and the presence of the RGD cell attachment tripeptide). They therefore appear to be functional even though, evolutionarily, teeth are in a regression phase in prototherians. It is possible, therefore, that DMP1 is also involved in other functions besides dentinogenesis. The DMP1 gene appears to evolve rapidly and apparently tolerates non-frame-shifting insertions/deletions throughout the coding sequence. Received: 22 February 1998 / Accepted: 11 July 1998  相似文献   

19.
He G  Gajjeraman S  Schultz D  Cookson D  Qin C  Butler WT  Hao J  George A 《Biochemistry》2005,44(49):16140-16148
Bone and dentin biomineralization are well-regulated processes mediated by extracellular matrix proteins. It is widely believed that specific matrix proteins in these tissues modulate nucleation of apatite nanoparticles and their growth into micrometer-sized crystals via molecular recognition at the protein-mineral interface. However, this assumption has been supported only circumstantially, and the exact mechanism remains unknown. Dentin matrix protein 1 (DMP1) is an acidic matrix protein, present in the mineralized matrix of bone and dentin. In this study, we have demonstrated using synchrotron small-angle X-ray scattering that DMP1 in solution can undergo oligomerization and temporarily stabilize the newly formed calcium phosphate nanoparticle precursors by sequestering them and preventing their further aggregation and precipitation. The solution structure represents the first low-resolution structural information for DMP1. Atomic force microscopy and transmission electron microscopy studies further confirmed that the nascent calcium phosphate nuclei formed in solution were assembled into ordered protein-mineral complexes with the aid of oligomerized DMP1, recombinant and native. This study reveals a novel mechanism by which DMP1 might facilitate initiation of mineral nucleation at specific sites during bone and dentin mineralization and prevent spontaneous calcium phosphate precipitation in areas in which mineralization is not desirable.  相似文献   

20.
The present in vitro study created nanometer crystalline hydroxyapatite (HA) and amorphous calcium phosphate for novel orthopedic applications. Specifically, nano-crystalline HA and amorphous calcium phosphate nanoparticles were synthesized by a wet chemical process followed by hydrothermal treatment for 2 hours at 200 degrees C and 70 degrees C, respectively. Resulting particles were then pressed into compacts. For the preparation of control conventional HA particles (or those currently used in orthopedics with micron diameters), the aforementioned calcium phosphate particles were pressed into compacts and sintered at 1100 degrees C for 2 hours. All calcium phosphate-based particles were fully characterized. Results showed that although there was an initial weight gain for all the compacts studied in this experiment, higher eventual degradation rates up to 3 weeks were observed for nano-amorphous calcium phosphate compared with nano-crystalline HA which was higher than conventional HA. Peptide functionalization (with the cell adhesive peptide lysine-arginine-serine-arginine [KRSR] and the non-cell-adhesive peptide lysine-serine-arginine-arginine [KSRR]) was accomplished by means of a three-step reaction procedure: silanization with 3-aminopropyltriethoxysilane (APTES), cross-linking with N-succinimidyl-3-maleimido propionate (SMP), and finally peptide immobilization. The peptide functionalization was fully characterized. Results demonstrated increased osteoblast (bone-forming cell) adhesion on non-functionalized and functionalized nano-crystalline HA compacts compared with nano amorphous calcium phosphate compacts; both increased osteoblast adhesion compared with conventional HA. To further exemplify the novel properties of nano crystalline HA, results also showed similar osteoblast adhesion between non-functionalized nano crystalline HA and KRSR functionalized conventional HA. Thus, results provided evidence that nanocrystalline HA should be further studied for orthopedic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号