首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membrane localization domain (MLD) was first proposed for a 4‐helix‐bundle motif in the crystal structure of the C1 domain of Pasteurella multocida toxin (PMT). This structure motif is also found in the crystal structures of several clostridial glycosylating toxins (TcdA, TcdB, TcsL, and TcnA). The Ras/Rap1‐specific endopeptidase (RRSP) module of the multifunctional autoprocessing repeats‐in‐toxins (MARTX) toxin produced by Vibrio vulnificus has sequence homology to the C1‐C2 domains of PMT, including a putative MLD. We have determined the solution structure for the MLDs in PMT and in RRSP using solution state NMR. We conclude that the MLDs in these two toxins assume a 4‐helix‐bundle structure in solution.  相似文献   

2.
Volvatoxin A2 (VVA2), a novel pore-forming cardiotoxic protein was isolated from the mushroom Volvariella volvacea. We identified an N-terminal fragment (NTF) (1-127 residues) of VVA2 as a domain for oligomerization by limited tryptic digestion. On preincubation of NTF with VVA2, NTF was found to inhibit VVA2 hemolytic activity by inducing VVA2 oligomerization in the solution in the same manner as liposomes. By site-directed mutagenesis, the amphipathic alpha-helix B of NTF or VVA2 was shown to be indispensable for its biological functions. Interestingly, at a molar ratio of recombinant NTF (reNTF)/VVA2 as low as 0.01, reNTF was able to inhibit VVA2 hemolytic activity and induce VVA2 oligomerization. This indicates that reNTF can trigger VVA2 oligomerization by a seeding effect. Furthermore, the recombinant C-terminal fragment (128-199 residues) was found to be a functional domain that mediates the membrane binding of VVA2. We found a fragment localized at the C-terminal half of VVA2 containing beta6, -7, and -8, which is protected from protease digestion because of its insertion of a membrane. We also identified a putative heparin binding site (HBS) located in the VVA2 C terminus (166-194 residues), which was conserved among 10 kinds of snake venom cardiotoxins. VVA2 or the reHBS fragment was shown to interact with sulfated glycoaminoglycans by affinity column chromatography. The finding of a higher number of glycoaminoglycans in the membrane of cardiac myocytes suggested that they could be the specific membrane target for VVA2. Taken together, these findings indicate that VVA2 contains two functional domains, NTF and CTF. The NTF domain is responsible for VVA2 oligomerization and the CTF domain for membrane binding and insertion. Our results support a model whereby the formation of VVA2 oligomeric pre-pore complexes precedes their membrane insertion.  相似文献   

3.
Histidine-rich glycoprotein (HRGP), an abundant heparin-binding protein found in plasma and thrombocytes, exerts antibacterial effects against Gram-positive bacteria (Enterococcus faecalis and Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Fluorescence studies and electron microscopy to assess membrane permeation showed that HRGP induces lysis of E. faecalisbacteria in the presence of Zn2+ or at low pH. Heparin blocked binding of the protein to E. faecalis and abolished antibacterial activity. Furthermore, truncated HRGP, devoid of the heparin-binding and histidine-rich domain, was not antibacterial. It has previously been shown that peptides containing consensus heparin-binding sequences (Cardin and Weintraub motifs) are antibacterial. Thus, the peptide (GHHPH)4, derived from the histidine-rich region of HRGP and containing such a heparin-binding motif, was antibacterial for E. faecalis in the presence of Zn2+ or at low pH. The results show a previously undisclosed antibacterial activity of HRGP and suggest that the histidine-rich and heparin-binding domain of HRGP mediates the antibacterial activity of the protein.  相似文献   

4.
Structural studies of mammalian prion protein at pH values between 4.5 and 5.5 established that the N-terminal 100 residue domain is flexibly disordered. Here, we show that at pH values between 6.5 and 7.8, i.e. the pH at the cell membrane, the octapeptide repeats in recombinant human prion protein hPrP(23-230) encompassing the highly conserved amino acid sequence PHGGGWGQ are structured. The nuclear magnetic resonance solution structure of the octapeptide repeats at pH 6.2 reveals a new structural motif that causes a reversible pH-dependent PrP oligomerization. Within the aggregation motif the segments HGGGW and GWGQ adopt a loop conformation and a beta-turn-like structure, respectively. Comparison with the crystal structure of HGGGW-Cu(2+) indicates that the binding of copper ions induces a conformational transition that presumably modulates PrP aggregation. The knowledge that the cellular prion protein is immobilized on the cell surface along with our results suggests a functional role of aggregation in endocytosis or homophilic cell adhesion.  相似文献   

5.
It was previously shown that the two replacements Gly 77-->Ala (G77A) and Ala 82-->Pro (A82P) increase the thermostability of phage T4 lysozyme at pH 6.5. Such replacements are presumed to restrict the degrees of freedom of the unfolded protein and so decrease the entropy of unfolding [B. W. Matthews, H. Nicholson, and W. J. Becktel (1987) Proceedings of the National Academy of Science USA Vol. 84, pp. 6663-6667]. To further test this approach, three additional replacements--G113A, K60P and A93P--have been constructed. On the basis of model building, each of these three replacements was judged to be less than optimal because it would tend to introduce unfavorable van der Waals contacts with neighboring parts of the protein. The presence of such contacts was verified for G113A and K60P by conformational adjustments seen in the crystal structures of these mutant proteins. In the case of G113A there are backbone conformational changes of 0.5-1.0 A in the short alpha-helix, 108-113, that includes the site of substitution. In the case of K60P the pyrrolidine ring shows evidence of strain. The thermal stability of each of the three variants at both pH 2.0 and pH 6.5 was found to be very close to that of wild-type lysozyme. The results suggest that the procedure used to predict sites for both Xaa-->Pro and Gly-->Ala is, in principle, correct. At the same time, the increase in stability expected from substitutions of this type is modest, and can easily be offset by strain associated with introduction of the alanine or proline. This means that the criteria used to select substitutions that will increase thermostability have to be stringent at least. In the case of T4 lysozyme this severely limits the number of sites. The analysis reveals a significant discrepancy between the conformational energy surface predicted for the residue preceding a proline and the conformations observed in crystal structures.  相似文献   

6.
We have purified a new toxin (BmK 17[4]) from Asian scorpion (Buthus martensii Karsch) venom that possesses a distinctive structural motif in its N-terminal (positions 8-12) that is similarly found in two other previously described alpha-like toxins. BmK 17[4] prolongs action potentials (APs) in frog nerve and was purified using gel filtration, ion exchange, fast protein liquid chromatography (FPLC), and high-performance liquid chromatography (HPLC). BmK 17[4] significantly prolonged frog APs but it did not alter APs from an insect ventral nerve cord at similar doses. When applied to voltage-clamped frog muscle single fibers, BmK 17[4] prolonged fast inactivation. Because the polypeptide prolongs APs when both K+ and Ca2+ channels were blocked, BMK 17[4] acts to selectively alter Na+ channel inactivation. The N-terminal sequence of BmK 17[4] was found to be VRDAYIAKPENCVYXC --. The molar mass of BmK 17[4] was determined by LC/MS/MS to be 7097 Daltons. The N- terminal motif (KPENC), which introduces a reverse turn in residues 8-12, does not appear in previously characterized BmK alpha-toxins and may be characteristic of alpha-like toxins. Sequence similarity database searches were used to test whether the N-terminal sequences of alpha-like polypeptide toxins from B. martensii Karsch possess a distinctive structural motif in its 5-residue reverse turn (alpha-turn) that is conserved. Sequence similarities with putative polypeptides encoded by cDNAs obtained from a cDNA library [Zhu, S. Y., Li, W. X., Zenq, X. C., et al. (2000) Nine novel precursors of Buthus martensii scorpiox alpha-toxin homologues. Toxicon 38, 1653-1661] from BmK venom glands showed that an active polypeptide toxin cleaved from the putative propolypeptide toxin BmK M9 is likely identical to BmK 17[4]. Sequence comparisons with toxins and putative toxins from B. martensii Karsch and other species revealed that a group of these toxins possess a common structural motif in their alpha-turn. A neighbor-joining phylogenetic analysis suggests that there are two phylogenetic sister groups of related BmK polypeptides; one possesses the KPENC motif and the other possesses a modifed version (KPHNC) of it.  相似文献   

7.
The interaction of A beta peptides with the lipid matrix of neuronal cell membranes plays an important role in the pathogenesis of Alzheimer's disease. By using EPR and CD spectroscopy, we found that in the presence of Cu(2+) or Zn(2+), pH, cholesterol, and the length of the peptide chain influenced the interaction of these peptides with lipid bilayers. In the presence of Zn(2+), A beta 40 and A beta 42 both inserted into the bilayer over the pH range 5.5-7.5, as did A beta 42 in the presence of Cu(2+). However, A beta 40 only penetrated the lipid bilayer in the presence of Cu(2+) at pH 5.5-6.5; at higher pH there was a change in the Cu(2+) coordination sphere that inhibited membrane insertion. In the absence of the metals, insertion of both peptides only occurred at pH < 5.5. Raising cholesterol to 0.2 mol fraction of the total lipid inhibited insertion of both peptides under all conditions investigated. Membrane insertion was accompanied by the formation of alpha-helical structures. The nature of these structures was the same irrespective of the conditions used, indicating a single low energy structure for A beta in membranes. Peptides that did not insert into the membrane formed beta-sheet structures on the surface of the lipid.  相似文献   

8.
Coagulation factor IX-binding protein, isolated from Trimeresurus flavoviridis (IX-bp), is a C-type lectin-like protein. It is an anticoagulant consisting of homologous subunits, A and B. Each subunit has a Ca(2+)-binding site with a unique affinity (K(d) values of 14muM and 130muM at pH 7.5). These binding characteristics are pH-dependent and, under acidic conditions, the Ca(2+) binding of the low-affinity site was reduced considerably. In order to identify which site has high affinity and to investigate the pH-dependent Ca(2+) release mechanism, we have determined the crystal structures of IX-bp at pH 6.5 and pH 4.6 (apo form), and compared the Ca(2+)-binding sites with each other and with those of the solved structures under alkaline conditions; pH 7.8 and pH 8.0 (complexed form). At pH 6.5, Glu43 in the Ca(2+)-binding site of subunit A displayed two conformations. One (minor) is that in the alkaline state, and the other (major) is that at pH 4.6. However, the corresponding Gln43 residue of subunit B is in only a single conformation, which is almost identical with that in the alkaline state. At pH 4.6, Glu43 of subunit A adopts a conformation similar to that of the major conformer observed at pH 6.5, while Gln43 of subunit B assumes a new conformation, and both Ca(2+) positions are occupied by water molecules. These results showed that Glu43 of subunit A is much more sensitive to protonation than Gln43 of subunit B, and the conformational change of Glu43 occurs around pH6.5, which may correspond to the step of Ca(2+) release.  相似文献   

9.
Integration host factor (IHF) is a DNA-bending protein that recognizes its cognate sites through indirect readout. Previous studies have shown that binding of wild-type (WT)-IHF is disrupted by a T to A mutation at the center position of a conserved TTR motif in its binding site, and that substitution of betaGlu44 with Ala prevented IHF from discriminating between A and T at this position. We have determined the crystal structures and relative binding affinities for all combinations of WT-IHF and IHF-betaGlu44Ala bound to the WT and mutant DNAs. Comparison of these structures reveals that DNA twist plays a major role in DNA recognition by IHF, and that this geometric parameter is dependent on the dinucleotide step and not on the bound IHF variant.  相似文献   

10.
活性铝对小麦根生长及酶活性的影响   总被引:6,自引:1,他引:5  
利用铝形态分布与环境pH的相关性,通过改变染毒液pH条件,研究了不同浓度活性铝对小麦根生长、蛋白质含量及酸性磷酸酶活性的影响,并探讨了不同形态活性铝植物毒性的差异.本实验染毒液中总铝浓度设置为0(CK)、25(T1)和75μmol·L-1(T2)3组,各组pH分别调至4.0、4.5、5.0和5.5.结果表明,微量Ala与Alb对小麦根生长均具有抑制作用.但随染毒液中活性铝组分的改变,小麦根蛋白质含量和酸性磷酸酶活性显现相反变化趋势:T1和T2组在pH4.0,活性铝主要成分为Ala时(Ala浓度高于活性铝浓度的90%),小麦根细胞蛋白质含量显著下降,酸性磷酸酶活性显著上升;T1和T2组在pH5.0,Ala浓度降低至与Alb浓度接近,且Ala和Alb浓度均低于10μmol·L-1时,根细胞蛋白质含量显著上升,酸性磷酸酶活性显著下降.  相似文献   

11.
To determine the factors influencing the binding of L1 repressor to its cognate operator DNA, several gel shift as well as bioinformatic analyses have been carried out. The data show that time, temperature, salt, and pH each greatly affect the binding. In order to achieve optimum operator binding of L1 repressor in Tris buffer, the minimum requirements of time, temperature, salt, and pH were estimated to be 1 min, 32 degrees C, NaCl (50 mM), and 7.9, respectively. Interestingly Na+ but not NH4+, K+, or Li+ was found to augment significantly the binding activity of CI protein above the basal level. Anions like Cl-, citrate-, acetate-, and H2PO4- do not alter the binding of L1 repressor to its operator. We also show that an in frame deletion mutant of L1 repressor which does not carry the putative HTH motif (at its N-terminal end) fails to bind to its cognate operator DNA even at very high concentrations. The putative HTH motif was found highly conserved and evolutionarily very close to that of regulatory proteins of Y. pestis, H. marismortui, A. tumefaciens, etc. Taken together we suggest that N-terminal end of L1 repressor carries a HTH motif. Further analysis of the putative secondary structures of mycobacteriophage repressors reveals that two common regions encompassing more than 90% of primary sequence are present in all the four repressor molecules studied here. The results suggest that these common regions are utilized for carrying out identical functions.  相似文献   

12.
An endochitinase gene (chiA-HD73) from the insecticidal bacterium Bacillus thuringiensis subsp. kurstaki HD-73 was cloned, sequenced, and expressed in Escherichia coli DH5αF′. The chitinase activity of the encoded protein was studied in assays with different fluorogenic substrates. The chiA-HD73 gene contained an open-reading frame that encoded an endochitinase with a deduced molecular weight and an isoelectric point of, respectively, 74.5 kDa and 5.75. A putative signal peptide with cleavage sites for both Gram-positive and Gram-negative bacteria was identified. Comparison of ChiA-HD73 with other chitinases revealed a modular structure composed of a catalytic domain and a putative chitin-binding domain. ChiA-HD73 hydrolyzed both tetrameric and trimeric fluorogenic substrates, but not a chitobiose analog substrate, suggesting that the activity of ChiA-HD73 is mainly endochitinolytic. In addition, ChiA-HD73 showed high enzymatic activity within a broad pH range (pH 4–10), with a peak activity at pH 6.5. The optimal temperature for enzymatic activity was observed at 55°C. Its activity in a broad range of temperatures and pH suggests ChiA-HD73 could have biotechnological applications in insect control, particularly in synergizing the insecticidal crystal protein toxins of B. thuringiensis.  相似文献   

13.
We have purified a new toxin (BmK 17[4]) from Asian scorption (Buthus martensii Karsch) venom that possesses a distinctive structural motif in its N-terminal (positions 8–12) that is similarly found in two other previously described α-like toxins. BmK 17[4] prolongs action potentials (APs) in frog nerve and was purified using gel filtration, ion exchange, fast protein liquid chromatography (FPLC), and high-performance liquid chromatography (HPLC). BmK 17[4] significantly prolonged frog APs but it did not alter APs from an insect ventral nerve cord at similar doses. When applied to voltage-clamped frog muscle single fibers, BmK 17[4] prolonged fast inactivation. Because the polypeptide prolongs APs when both K+ and Ca2+ channels were blocked, BMK 17[4] acts to selectively alter Na+ channel inactivation. The N-terminal sequence of BmK 17[4] was found to be VRDAYIAKPENCVYXC—. The molar mass of BmK 17[4] was determined by LC/MS/MS to be 7097 Daltons. The N-terminal motif (KPENC), which introduces a reverse turn in residues 8–12, does not appear in previously characterized BmK α-toxins and may be characteristic of α-like toxins. Sequence similarity database searches were used to test whether the N-terminal sequences of α-like polypeptide toxins from B. martensii Karsch possess a distinctive structural motif in its 5-residue reverse turn (α-turn) that is conserved. Sequence similarities with putative polypetides encoded by cDNAs obtained from a cDNA library [Zhu, S. Y., Li, W. X., Zenq, X. C., et al. (2000) Nine novel precursors of Buthus martensii scorpiox alpha-toxin homologues. Toxicon 38, 1653–1661] from BmK venom glands showed that an active polypeptide toxin cleaved from the putative propolypeptide toxin BmK M9 is likely identical to BmK 17[4]. Sequence comparisons with toxins and putative toxins from B. martensii Karsch and other species revealed that a group of these toxins possess a common structural motif in their α-turn. A neighbor-joining phylogenetic analysis suggests that there are two phylogenetic sister groups of related BmK polypeptides; one possesses the KPENC motif and the other possesses a modifed version (KPHNC) of it.  相似文献   

14.
The mechanisms by which pore-forming toxins are able to insert into lipid membranes are a subject of the highest interest in the field of lipid-protein interaction. Eight mutants affecting different regions of sticholysin II, a member of the pore-forming actinoporin family, have been produced, and their hemolytic and lipid-binding properties were compared to those of the wild-type protein. A thermodynamic approach to the mechanism of pore formation is also presented. Isothermal titration calorimetry experiments show that pore formation by sticholysin II is an enthalpy-driven process that occurs with a high affinity constant (1.7 × 108 M− 1). Results suggest that conformational flexibility at the N-terminus of the protein does not provide higher affinity for the membrane, although it is necessary for correct pore formation. Membrane binding is achieved through two separate mechanisms, that is, recognition of the lipid-water interface by a cluster of aromatic residues and additional specific interactions that include a phosphocholine-binding site. Thermodynamic parameters derived from titration experiments are discussed in terms of a putative model for pore formation.  相似文献   

15.
Xenopus nuclear factor XNF7, a maternally expressed protein, functions in patterning of the embryo. XNF7 contains a number of defined protein domains implicated in the regulation of some developmental processes. Among these is a tripartite motif comprising a zinc-binding RING finger and B-box domain next to a predicted alpha-helical coiled-coil domain. Interestingly, this motif is found in a variety of protein including several proto-oncoproteins. Here we describe the solution structure of the XNF7 B-box zinc-binding domain determined at physiological pH by 1H NMR methods. The B-box structure represents the first three-dimensional structure of this new motif and comprises a monomer have two beta-strands, two helical turns and three extended loop regions packed in a novel topology. The r.m.s. deviation for the best 18 structures is 1.15 A for backbone atoms and 1.94 A for all atoms. Structure calculations and biochemical data shows one zinc atom ligated in a Cys2-His2 tetrahedral arrangement. We have used mutant peptides to determine the metal ligation scheme which surprisingly shows that not all of the seven conserved cysteines/histidines in the B-box motif are involved in metal ligation. The B-box structure is not similar in tertiary fold to any other known zinc-binding motif.  相似文献   

16.
A growth factor was isolated from a neutral pH extract of adult bovine brain. Purification of this polypeptide was achieved by a three step procedure including cationic exchange, heparin-Sepharose affinity and Mono S chromatography. This heparin binding protein had a molecular weight of 18,000 as assessed by silver-stained SDS-PAGE and was not immunologically and structurally related to acidic or basic FGF. Freshly purified protein had a maximal mitogenic effect on bovine brain capillary cells at a concentration of 100 pM. Microsequencing revealed an unique amino-terminal sequence homologous to heparin-binding growth-associated molecule (HB-GAM), a neuronal maturation protein, to pleiotrophin (PTN), a fibroblast cell growth factor and to one form of the putative protein product of the MK gene, a retinoic acid induced-gene.  相似文献   

17.
Annexin A2 and heparin bind to one another with high affinity and in a calcium-dependent manner, an interaction that may play a role in mediating fibrinolysis. In this study, three heparin-derived oligosaccharides of different lengths were co-crystallized with annexin A2 to elucidate the structural basis of the interaction. Crystal structures were obtained at high resolution for uncomplexed annexin A2 and three complexes of heparin oligosaccharides bound to annexin A2. The common heparin-binding site is situated at the convex face of domain IV of annexin A2. At this site, annexin A2 binds up to five sugar residues from the nonreducing end of the oligosaccharide. Unlike most heparin-binding consensus patterns, heparin binding at this site does not rely on arrays of basic residues; instead, main-chain and side-chain nitrogen atoms and two calcium ions play important roles in the binding. Especially significant is a novel calcium-binding site that forms upon heparin binding. Two sugar residues of the heparin derivatives provide oxygen ligands for this calcium ion. Comparison of all four structures shows that heparin binding does not elicit a significant conformational change in annexin A2. Finally, surface plasmon resonance measurements were made for binding interactions between annexin A2 and heparin polysaccharide in solution at pH 7.4 or 5.0. The combined data provide a clear basis for the calcium dependence of heparin binding to annexin A2.  相似文献   

18.
The structural organization of the amyloidogenic β-protein containing 40 amino acid residues (Aβ40) was studied by the high temperature molecular dynamics simulations in the acidic (pH ∼ 3) and basic (pH ∼ 8) pH regions. The obtained data suggest that the central Ala21-Gly29 segment of Aβ40 can adopt folded and partially unfolded structures. At the basic pH, this segment forms folded structures stabilized by electrostatic interactions and hydrogen bonds. At the acidic pH, it forms partially unfolded structures. Two other segments flanking to the central segment exhibit the propensity to adopt unstable interconverting α-helical, 310-helical and turn-like structures. One of these segments is comprised of the Ala30-Val36 residues at both of the considered pHs. The second segment is comprised of the Glu11-Phe20 at the basic pH and of the Glu11-Val24 residues at the acidic pHs. The revealed pH-dependent structuration of the Aβ40 allowed us to suggest a possible scenario for initial Aβ aggregation. According to this scenario, the occurrence of the partially unfolded states of the Ala21-Gly29 segment plays main role in the Aβ oligomerization process.Key words: amyloid-β protein, Alzheimer disease, oligomerization, fibril, electrostatic interactions, molecular dynamics simulations  相似文献   

19.
Abnormal regulation of brain glycogen metabolism is believed to underlie insulin-induced hypoglycaemia, which may be serious or fatal in diabetic patients on insulin therapy. A key regulator of glycogen levels is glycogen targeted protein phosphatase 1 (PP1), which dephosphorylates and activates glycogen synthase (GS) leading to an increase in glycogen synthesis. In this study, we show that the gene PPP1R3F expresses a glycogen-binding protein (R3F) of 82.8 kDa, present at the high levels in rodent brain. R3F binds to PP1 through a classical 'RVxF' binding motif and substitution of Phe39 for Ala in this motif abrogates PP1 binding. A hydrophobic domain at the carboxy-terminus of R3F has similarities to the putative membrane binding domain near the carboxy-terminus of striated muscle glycogen targeting subunit G(M)/R(GL), and R3F is shown to bind not only to glycogen but also to membranes. GS interacts with PP1-R3F and is hyperphosphorylated at glycogen synthase kinase-3 sites (Ser640 and Ser644) when bound to R3F(Phe39Ala). Deprivation of glucose or stimulation with adenosine or noradrenaline leads to an increased phosphorylation of PP1-R3F bound GS at Ser640 and Ser644 curtailing glycogen synthesis and facilitating glycogen degradation to provide glucose in astrocytoma cells. Adenosine stimulation also modulates phosphorylation of R3F at Ser14/Ser18.  相似文献   

20.
Ke Zhou 《Phytochemistry》2009,70(3):366-42847
Terpene synthases (TPS) require divalent metal ion co-factors, typically magnesium, that are bound by a canonical DDXXD motif, as well as a putative second, seemingly less well conserved and understood (N/D)DXX(S/T)XXXE motif. Given the role of the Ser/Thr side chain hydroxyl group in ligating one of the three catalytically requisite divalent metal ions and the loss of catalytic activity upon substitution with Ala, it is surprising that Gly is frequently found in this ‘middle’ position of the putative second divalent metal binding motif in plant TPS. Herein we report mutational investigation of this discrepancy in a model plant diterpene cyclase, abietadiene synthase from Abies grandis (AgAS). Substitution of the corresponding Thr in AgAS with Ser or Gly decreased catalytic activity much less than substitution with Ala. We speculate that the ability of Gly to partially restore activity relative to Ala substitution for Ser/Thr stems from the associated reduction in steric volume enabling a water molecule to substitute for the hydroxyl group from Ser/Thr, potentially in a divalent metal ion coordination sphere. In any case, our results are consistent with the observed conservation pattern for this putative second divalent metal ion binding motif in plant TPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号