首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The localization of vasoactive intestinal polypeptide (VIP) in the hypothalamus of the quail has been studied by means of light- and electron-microscopic immunohistochemistry. Numerous VIP-immunoreactive perikarya are distributed in the caudal portion of the nucleus infundibularis (n. tuberis) and nucleus mamillaris lateralis, and sparse in the preoptic area, nucleus supraopticus and nucleus paraventricularis. Dense localization of immunoreactive-VIP fibers is observed in the external layer of the median eminence, in close contact with the primary portal capillaries. The main origins of these fiber terminals are VIP-immunoreactive perikarya of the nucleus infundibularis. These neurons are spindle or bipolar and extend one process to the ventricular surface and another to the external layer of median eminence. They are CSF-contacting neurons and apparently constitute the tubero-hypophysial tract that links the third ventricle and the hypophysial portal circulation. VIP-reactive neurons in the nucleus mamillaris lateralis also project axons to the external layer of the median eminence, constituting the posterior bundle of the tuberohypophysial tract. Numerous VIP-immunoreactive perikarya occur also in the nucleus accumbens/pars posterior close to the lateral ventricle. They are also CSF-contacting neurons extending a process to the lateral ventricle. There are moderate distributions of VIP-reactive fibers in the area ventralis and in the area septalis.Ultrastructurally, the immunoreactive products against VIP are found in the elementary granules, 75–115 nm in diameter, within the nerve fibers in the median eminence.This investigation was supported by Scientific Research Grants No. 00556196, No. 56360027 and No. 56760183 from the Ministry of Education of Japan to Professor Mikami and Mr. Yamada  相似文献   

2.
Somatostatin/catecholamine as well as growth hormone releasing factor/catecholamine interactions have been characterized in the hypothalamus and the preoptic area using morphometrical and quantitative histofluorimetrical analyses.
  • 1.(1) The morphometrical analysis of adjacent coronal sections of the rat median eminence demonstrated a marked overlap of somatostatin and tyrosine hydroxylase immunoreactive nerve terminals as well as of growth hormone releasing factor and tyrosine hydroxylase immunoreactive nerve terminals in the medial and lateral palisade zones of the rostral and central parts. Furthermore, the studies on codistribution of growth hormone releasing factor and tyrosine hydroxylase immunoreactivity indicate that only a limited proportion of the growth hormone releasing factor and the dopamine nerve terminals may costore dopamine and growth hormone releasing factor respectively in the medial and lateral palisade zones (see Meister et al., 1985).
  • 2.(2) Intravenous injections of somatostatin 1–14 (100 μg/kg, 2 h) into the hypophysectomized male rat produced an increase in dopamine utilization in the medial and lateral palisade zones of the median eminence.
  • 3.(3) Intravenous injections of rat hypothalamic growth hormone releasing factor (80 μg/kg, 2 h) in the hypophysectomized male rat did not change dopamine utilization in the median eminence but increased noradrenaline utilization in the ventral zone of the hypothalamus and produced a depletion of noradrenaline stores in the paraventricular hypothalamic nucleus.
  • 4.(4) Intravenous injections of human pancreatic growth hormone releasing factor 1–44 (80 μg/kg, 2 h) in the hypophysectomized male rat did not change dopamine utilization in the median eminence, but reduced noradrenaline utilization in the subependymal layer and increased noradrenaline utilization in the suprachiasmatic preoptic nucleus.
The combined results of the present and previous studies have led us to put forward the medianosome concept. The medianosome is defined as an integrative unit, which consists of well defined aggregates of transmitter identified nerve terminals interacting with one another in the external layer of the median eminence. Our present data indicate the existence of putative medianosomes consisting predominantly of growth hormone releasing factor nerve terminals costoring dopamine as well as of somatostatin and dopamine nerve terminals, which interact locally to control growth hormone secretion. A complementary control of growth hormone secretion may be exerted by noradrenaline mechanisms in the subependymal layer, in the ventral zone and/or in the suprachiasmatic preoptic nucleus. However, further analyses in view of the differential effects seen with the present doses of rat hypothalamic and human pancreatic growth hormone releasing factor have to be done. The results also indicate the possible existence of growth hormone releasing factor receptors in the median eminence which may participate in the feedback control of the growth hormone releasing factor immunoreactive neurons in the ventral zone of the hypothalamus.  相似文献   

3.
Summary The reaction of nerve endings in the median eminence of the rat to zinc iodide-osmium tetroxide (ZIO) staining was examined electron microscopically under normal and experimental conditions. The experimental condition of catecholamine exhaustion in the nerve endings was induced by the administration of H44/68 and reserpine. Vesicles in the terminals of catecholaminergic nerves reacted similarly to ZIO staining in both normal and experimental material. The majority of synaptic vesicles in various terminals gave a positive ZIO reaction. The neurosecretory elementary granules, however, failed to react with ZIO. On the other hand, some nerve terminals in the external layer of the median eminence showed a strong positive reaction in the cytoplasmic matrix, in mitochondria as well as in synaptic vesicles. These findings strongly suggest that the ZIO-positive substance in nerve terminals is not the transmitter itself, i.e. the monoamine, but rather represents a range of substances commonly found in various kinds of synaptic vesicles and is probably proteinaceous in nature. A brief discussion is also given on the difference in ZIO reactivity between neurosecretory elementary granules and small vesicles in the hypothalamo-hypophyseal tract.This work was supported in part by a research grant from the Ministry of Education, Japan  相似文献   

4.
The distribution of melanin-concentrating hormone (MCH) in the central nervous system of the frog Rana ridibunda was determined by the indirect immunofluorescence technique using antibodies against synthetic salmon MCH, generated in rabbits. The most prominent group of MCH-like containing perikarya was detected in the preoptic nucleus. Comparatively, a moderate number of cell bodies was observed in the dorsal infundibular nucleus and in the ventral thalamic area. Brightly immunofluorescent nerve bundles were found in the preoptic nucleus and in the ventral infundibular nucleus, coursing towards the internal zone of the median eminence and the pituitary stalk. An intense network of immunofluorescent fibers was localized in the neural lobe of the pituitary. The subcellular localization of MCH-like material was studied in the neurohypophysis using the immunogold technique. It was demonstrated that MCH-like material was contained in dense core vesicles (80–90 mm in diameter) within specific nerve terminals. The present findings indicate that, in amphibians, MCH-like peptide is located in specific hypothalamic neurons. Our data suggest that MCH may be released by neurohypophyseal nerve endings as a typical neurohormone.  相似文献   

5.
McDonald J  Calka J 《Acta anatomica》1994,151(3):171-179
The purpose of this study was to examine the anatomical relationships of perikarya and fibers containing neuropeptide Y (NPY) and luteinizing-hormone-releasing hormone (LHRH) in the hypothalamus and preoptic region of female rats. In view of our previous report of stimulatory effects of estrogen on LHRH and NPY levels in the median eminence, animals were bilaterally ovariectomized and subsequently implanted subcutaneously with capsules containing estradiol benzoate in oil or vehicle. Following intracerebroventricular injection of colchicine, rats were perfused with fixative and their brains sectioned and processed for immunohistochemical visualization of NPY and LHRH in the same section and in consecutive sections. Estrogen treatment had no discernible effect on the distribution or relationship of these peptides. NPY-immunoreactive fibers were intimately associated with LHRH-labeled primary dendrites and perikarya in the medial preoptic region and horizontal limb of the diagonal band of Broca. Fibers containing NPY or LHRH overlapped extensively in the lateral palisade region of the median eminence and also in the subependymal and internal zones. The external zone of the median eminence displayed relatively less overlap of these peptide systems. LHRH-immunoreactive axons coursed among NPY-labeled perikarya in the arcuate nucleus and appeared to contact these cells. These results suggest that NPY-containing axons may influence LHRH-positive neurons at the cell body and also at the site of axon termination in the median eminence. LHRH-containing axons appear to contact NPY-immunoreactive perikarya in the arcuate nucleus and may interact with terminals in the median eminence. This arrangement may provide a mechanism for communication between NPY and LHRH neurons and for the neuroendocrine coordination of hypothalamic NPY and LHRH secretion before ovulation.  相似文献   

6.
Summary The distribution of VIP- and TRH-immunoreactivity in neurons and processes within the hypothalamus of the pigeon was investigated with light-microscopic immunocytochemical techniques. Most of the VIP-containing neurons are concentrated in the middle and caudal parts of the hypothalamus, with the greatest concentration of perikarya occurring in the medial and lateral part of the ventromedial hypothalamic nucleus and the infundibular nucleus. These cells give rise to axons that seem to extend into the median eminence. An extensive network of VIP-immunoreactive fibers and varicosities occupy the external layer of the median eminence. The majority of TRH-containing neurons is found in the anterior hypothalamus with the greatest concentration of cells in the magnocellular preoptic, medial preoptic, suprachiasmatic and paraventricular nuclei. TRH-immunoreactive fibers and varicosities form a dense arborization in the external layer of the median eminence. Lactation seems to induce substantial changes in VIP as well as in TRH-immunostaining in the median eminence and other hypothalamic regions as compared to control, sexually active animals. Furthermore, TRH-immunoreactivity decreased in the median eminence following 60-min exposure to cold. These results suggest that VIP- and TRH-containing pathways in the pigeon hypothalamus are involved in the mediation of neuroendocrine responses.  相似文献   

7.
Summary The arcuate nucleus, median eminence, and the lateral preoptic area from the brains of aldehyde-perfused male and female rats were examined by electron microscopy. In the lateral preoptic area, three neuronal types are described: a small light neuron, a larger light one, and a dark neuron resembling the larger light one in size and nuclear shape. Many myelinated axons are interposed among single neurons or neuronal pairs. The relationship of structures to each other is discussed. Several observations not previously reported are illustrated from tissue of the arcuate nucleus and median eminence.  相似文献   

8.
Seki  T.  Nakai  Y.  Shioda  S.  Mitsuma  T.  Kikuyama  S. 《Cell and tissue research》1983,233(3):507-516
The distribution of immunoreactive thyrotropin-releasing hormone (TRH) in the forebrain and hypophysis of Rana catesbeiana was studied by means of specific radioimmunoassay and immunohistochemistry based on peroxidase-antiperoxidase (PAP) techniques. A relatively high concentration of immunoassayable TRH is present in the hypothalamus. Immunoreactive TRH cell bodies are found in the anterior part of the preoptic nucleus, the dorsal infundibular nucleus, the nucleus of diagonal band of Broca, and the medial part of the amygdala. Immunoreactive nerve terminals are observed in the neurohypophysis and the external layer of the median eminence, where the terminals are in close contact with the capillary loops of the hypophyseal portal vessels. The possible role of TRH in the frog brain is discussed.  相似文献   

9.
Summary The hypothalamic neurosecretory system of the bullfrog, Rana catesbeiana, was studied with light- and electron microscopy. The median eminence is roughly divided into two portions. The upper portion mostly consists of ependymal cells, glial cells and preoptico-hypophysial nerve tract, whereas in the lower portion, neurosecretory axons, glial cells, processes of glial and ependymal cells, and fine blood vessels of the hypothalamic portal vein are located. A part of the neurosecretory axons of the preoptico-hypophysial tract proceeds to the lower portion of the median eminence. These axons are arranged perpendicularly to the capillaries of the hypothalamic portal vein. The glial cells are densely located in the area of the median eminence where neurosecretory material is abundant. The neurosecretory material in the neurosecretory cells, their axons, the median eminence and the pars nervosa of the bullfrog shows a positive reaction to PAS treatment.The neurohemal area of the median eminence is occupied by many neurosecretory and non-neurosecretory axons, containing neurosecretory granules and/or synaptic vesicles. The axonal portions with the synaptic vesicles which are considered to be the nerve endings abut on the capillaries of the portal system. The size of synaptic vesicles in the axon terminals containing few neurosecretory granules is larger than those in the endings with many neurosecretory granules. Infrequently glial and ependymal processes are interposed between the nerve endings and the capillary wall.In the hilar region of the infundibulum, synapses are frequently observed between the thin fibers with or without neurosecretory granules and dendrites of non-neurosecretory neurons. The probable functions of these synapses are briefly discussed on the basis of our findings. Both in the hilar region of the infundibulum and in the pars nervosa, electron-dense neurosecretory granules of two different sizes were observed. The median eminence contains only one type of granules.The fine structure of the pars nervosa shows similar structures to those of the median eminence. Both in the median eminence and the pars nervosa, the fenestrated endothelium of the capillaries was frequently observed. The thick perivascular connective tissue space containing fibroblasts and collagen fibrils was observed both in the median eminence and the pars nervosa. Vesicles in the cytoplasm of the endothelial cells which appear to take a part in the transendothelial transport were observed.This investigation was supported in part by United States Public Health Service Research Grant, No. A-3678, to Hideshi Kobayashi from the National Institute of Arthritis and Metabolic Diseases and partly by a grant for Fundamental Scientific Research from the Ministry of Education of Japan. The authors wish to express their thanks to Prof. K. Takewaki for his kind encouragement.  相似文献   

10.
Summary In the median eminence of the newt a medial region and two lateral regions are described.In cross section, the medial region appears to be made up of 1) an outer or glandular zone (Zone I) containing aldehyde-thionine-positive and negative nerve fibres and blood capillaries. Nerve fibres appear aligned in palisade array along the capillaries. 2) An inner zone (Zone II) made up of a) a layer of aldehyde-thionine-positive nerve fibres (fibrous layer) belonging to the preoptic hypophyseal tract and b) a layer of ependymal cells lining the infundibular lumen and reaching the blood vessels with their long processes.The lateral regions display a less pronounced stratification and aldehyde-thionine positive nerve fibres are nearly absent.A slender lamina (ependymal border) containing mainly aldehyde-thionine-positive nerve fibres and ependymal cells connects the median eminence to the pars nervosa.At the ultrastructural level, in the outer zone of the medial region at least 4 types of nerve fibres and nerve endings are identified:Type I nerve fibres containing granular vesicles of 700–1000 Å and clear vesicles (250–400 Å).Type II nerve fibres containing granular vesicles and polymorphous granules of 900–1300 Å and clear vesicles (250–400 Å).Type III nerve fibres containing dense granules of 1200–2000 Å and clear vesicles of 250–400 Å.Type IV nerve fibres containing only clear vesicles of 250–400 Å. In the inner zone too, all these nerve fiber types are found among ependymal cells, while the fibrous layer consists of nerve fibres containing granules of 1200–2000 Å in diameter.In the lateral regions Type I, Type II and Type IV nerve fibres and their respective perivascular terminals are found; axons containing dense granules (1200–2000 Å) are scanty. In these regions typical synapses between Type I nerve fibres and processes rich in microtubules are visible.The classification and functional significance of nerve fibres in the median eminence are still unsolved, but it may be assumed that nerve fibres of the medial region belong to both the preoptic hypophyseal and tubero hypophyseal tract, while the lateral regions are characterized by nerve fibres of the tubero hypophyseal tract. Peculiar specializations of the ependymal cells in the median eminence of the newt are also discussed.Work supported by a grant from the Consiglio Nazionale delle Ricerche.The authors are indebted to Mr. G. Gendusa and P. Balbi for technical assistance.  相似文献   

11.
The morphological distribution of the nerve terminals containing LH-RH in the hypothalamus especially in the median eminence of the proestrus female rat was demonstrated by immunohistochemistry, using FITC and peroxidase antibody. The terminals containing LH-RH were classified into four groups on the topographic relationship. LH-RH nerve processes terminated mainly in the infurdibular radix within an elliptical zone surrounding the bases of the infundibular recessus. The heaviest concentration of LH-RH terminals immunohistochemically demonstrated lay on each side of the region extending from the dorsal part of tuberoinfundibular sulcus to the lateral part of the external layer of the superior labium of the infundibulum. We were unable to detect any neuronal soma with the immunoreactivity to LH-RH in the hypothalamic gray matter. The distributional patterns of LH-RH, GH-RIH and monoamine in the median eminence as well as their relationships were briefly discussed.  相似文献   

12.
Summary The GABAergic innervation of the mouse pituitary, including the median eminence, was studied at light microscopic and ultrastructural levels by use of a pre-embedding immunocytochemical technique with antibodies directed against GABA. In the median eminence, a high density of GABA-immunoreactive fibers was found in the external layer where the GABAergic varicosities were frequently observed surrounding the blood vessels of the primary capillary plexus. In the internal and subependymal layers, only few fibers were immunoreactive. The intense labeling of the external layer was observed in the entire rostro-caudal extent of the median eminence. In the pituitary proper, a dense network of GABA-immunoreactive fibers was revealed throughout the neural and intermediate lobes, entering via the hypophyseal stalk. The anterior and tuberal lobes were devoid of any immunoreactivity. The GABA-immunoreactive terminals were characterized in the median eminence, and in the intermediate and posterior lobes at the electron-microscopic level. They contained small clear vesicles, occasionally associated with dense-core vesicles or neurosecretory granules. In the intermediate lobe they were seen to be in contact with the glandular cells. In the posterior lobe and in the median eminence, GABA-immunoreactive terminals were frequently located in the vicinity of blood vessels. These results further support the concept of a role of GABA in the regulation of hypophyseal functions, via the portal blood for the anterior lobe, directly on the cells in the intermediate lobe, and via axo-axonic mechanisms in the median eminence and posterior lobe.  相似文献   

13.
The effect of thyroid hormone on the development of diencephalic monoaminergic neurons was studied in tadpoles of Bufo bufo japonicus. Monoamine-containing neurons in the preoptic recess organ (PRO) appeared later than those in the paraventricular organ (PVO) and nucleus infundibularis dorsalis (NID). After deprivation of thyroidal primordium no fluorescent neurons developed in the PRO. Development of monoaminergic neurons in the PVO and NID was not affected by thyroidectomy. Thyroxine treatment brought about the fluorescent neurons in the PRO of the thyroidectomized tadpoles. Fluorescent terminals in the median eminence became conspicuous around the capillaries which penetrated to the median emience, when the tadpoles reached late prometamorphic stage. In the median eminence of thyroidectomized tadpoles, the monoaminergic axon terminals did not develop. Thyroxine induced both the fluorescent terminals and the capillary penetration in the median eminence of the thyroidectomized tadpoles. In the tadpoles hypophysectomized at tail-bud stage, thyroxine induced neither the fluorescent terminals nor the capillaries in the median eminence.  相似文献   

14.
Summary The ontogenetic development of catecholamine (CA)-and LHRH-containing nerve endings in the median eminence of the rat was investigated by combining fluorescence histochemistry and immunohistochemistry in the same tissue section. LHRH-terminals appeared earlier than CA-terminals and were already detectable in the lateral part of the external layer of the central ME on the first day after birth. CA-nerve endings were first seen in a corresponding region of the ME on the seventh postnatal day. At this stage both types of terminals showed the earliest manifestation of a correlative pattern of their distribution. Subsequently the development of both types of nerve endings proceeded rapidly, and at 14 days their distribution pattern corresponded to that in adult animals. The authors conclude that at this stage the CA-neurons play a constant and significant role in the release of LHRH into the portal capillaries. The correlation between both types of nerve endings and the ontogenetic development of the capillary plexuses of the hypophysial portal system is discussed.This work was supported in part by a grant (No. 248093, 321426) from the Ministry of Education, Science and Culture, Japan  相似文献   

15.
Summary The distribution of somatostatin (SRIF) — and corticotropin-releasing factor (CRF)-like — immunoreactive material was studied in the brain of four amphibian species (Ambystoma mexicanum, Pleurodeles waltlii, Xenopus laevis, Rana ridibunda) by use of immunocytochemistry. A wide network of SRIF-immunoreactive fibers and numerous perikarya were observed in all amphibians examined, with a dense accumulation of nerve endings in the external layer of the median eminence (ELME). In the representatives of the four amphibian species the CRF-like system was more circumscribed. Immunoreactive perikarya were present in the preoptic area, mainly in a ventrobasal position, and in the interpeduncular nucleus. The tract running along the ventral part of the tuber cinereum ends in the ELME facing the rostroventral lobe of the pars distalis that contains corticotrophs. CRF fibers were scarce or absent in the neural lobe. In all species studied in the present work, CRF fibers end in the area of the ELME close to the pituitary lobe containing corticotrophs. This correlation is similar to that reported for the Japanese quail and several teleosts.This work was supported by a grant from the Belgian Nationaal Fonds voor Geneeskundig Wetenschappelijk Onderzoek and the CNRS  相似文献   

16.
Gonadotropin releasing hormone (GnRH) content of the two halves of the median eminence of the rat hypothalamus was determined by radioimmunoassay three weeks after three different unilateral knife cuts around the preoptic area. A unilateral cut in front or above the area caused a more than 25% decrease in the GnRH content of the two halves of the median eminence. A cut lateral to the preoptic region had only a slight effect similar to that observed after sham operations. The data suggest that probably more than 50% of the rat median eminence GnRH derives from outside the preoptic-suprachiasmatic region. The GnRH fibres projecting to the median eminence but arising from outside the preoptic region, probably mainly from GnRH perikarya in the limbs of the diagonal band of Broca and septum, enter this area partly from rostral and partly from above, but not from lateral direction. partly from rostral and partly from above, but not from lateral direction. Several of these fibres probably cross before terminating in the median eminence.  相似文献   

17.
Summary The development of the external zone of the median eminence of the mouse was studied in the electron microscope. The examination follows the development of the embryo from the 15th day of the gestation period and the juvenile growth until 24 days of age.Single terminals of the tubero-infundibular neurons of the external zone were found to extend to the outer basement membrane of the perivascular space of the portal primary capillary plexus in the 16 day-old embryo. In the 18 day-old embryo a narrow external zone has developed. Organization of the external zone into the adult pattern is accomplished at the age of three to four weeks. Small agranular as well as large granular vesicles are present in the tubero-infundibular nerve terminals even in the 16 day-old embryo.Changes in the organization of the nerve endings along the outer perivascular basement membrane in relation to the ependymal vascular feet were considered.  相似文献   

18.
A scanning (SEM) and transmission electron microscopic (TEM) study of the ventricular wall of the hypothalamus of Triturus vulgaris was performed with special regard to the intraventricular dendrite terminals of the cerebrospinal fluid (CSF) contacting neurons of the preoptic area (magnocellular and parvocellular preoptic nuclei), the infundibular lobe (anterior periventricular nucleus, infundibular nucleus), and the paraventricular organ. In the preoptic area and infundibular lobe, the terminals were knob-like or club-shaped, of various sizes (diameter about 0,5 to 3,0 micrometer) and located immediately above the ependyma. Ultrastructurally, they may contain dense-core vesicles of varying sizes. The CSF contacting dendrite endings of the paraventricular organ built up a supraependymal labyrinthic layer which could be divided into a rostral crest-like part and a caudal flat and broad division. In both parts, three main types of terminals of various size and shape could be distinguished: a) ramifying, b) elongated, and c) bulb-like dendrite endings which also differed by their TEM structure. The bulk-like terminals, first of all the small ones, originated from the distal part of the nucleus of the organ (nucleus organi paraventricularis) while the other two types took their origin from its intra- and subependymal part. In all areas investigated, each intraventricular dendrite ending gave rise to a solitary cilium (type 9 X 2 + 0). It differed from the ependymal kinocilia by both SEM and TEM characteristics. In the paraventricular organ, the neuronal cilia were hidden inside, or below the supraependymal layer of terminals. There were intraventricular axons which formed synapses on CSF contacting dendrite endings of both parts of the paraventricular organ. Free intraventricular neurons, further ependymal areas heavily or scarcely ciliated, were described. The CSF contacting dendrite terminals were predominantly present near ventricular recesses and in regions where the ependyma was scarcely ciliated.  相似文献   

19.
Summary The indirect immunofluorescence technique was used to demonstrate a substance reacting with gastrin antisera in the brain of Xenopus laevis.Immunoreactive material was found in two sites: (1) In the caudal hypothalamus more precisely in the nucleus infundibularis ventralis, (NIV) of the pars ventralis of the tuber cinereum, (PVTC). The fluorescent axons of the reactive parikarya of the NIV give rise to two symmetrical tracts which run rostro-ventrally and join, in the infundibular floor, the preoptico-hypophysial tract, where they form an uneven median tract coursing caudally and running along the medio-tuberal area before entering the external zone of the median eminence. (2) In the anterior preoptic area (APOA), where numerous nerve fibers and endings form a dense network near the preoptic recess. The exact origin of these terminals has not yet been determined.Control of immunohistochemical specificity shows that the labeling by gastrin antisera is suppressed by gastrin (2–17), but also by cholecystokinin (CCK) and pentagastrin (Peptavlon). These results indicate that the immunoreactive substance revealed belongs to the gastrin group and has an antigenic determinant composed of the amino acid sequence or a portion thereof common to gastrin, CCK and Peptavlon (Trp-Met-Asp-Phe).It should be emphasized that, in the brain of Xenopus laevis, both gastrinimmunoreactive sites correspond to the sites of uptake of steroid hormones (Kelley et al., 1975; Morrell et al., 1975).Supported by the D.G.R.S.T., Contrat n 77.7.0648  相似文献   

20.
Summary The development of immunoreactive (ir) somatostatin-containing nerve terminals in the rat median eminence (ME) has been examined electron-microscopically. Nerve fibers containing ir particles scattered throughout the axoplasm are first seen in the external layer of the ME on day 18.5 of gestation, and, on day 21.5 appear to terminate on the basement membrane of the perivascular space of the portal vessels. After birth, the fiber terminals contain several membrane-limited granules, which are labeled with ir PAP particles. Ultrathin, Epon-embedded sections of ME, treated by the protein A gold-labeling method for somatostatin, demonstrate positively labeled granules in the nerve fibers in the postnatal ME, but in the prenatal tissue, no specific gold-labeling is found. These findings show that, in the external layer of the ME, somatostatin storing occurs in the granules in the axonal terminals after birth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号