首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Since mitochondrial factors have been implicated in apoptosis, experiments were designed to assess whether or not the potent mitochondrial nuclease could be one of these factors. Nuclei isolated by two different methods were found to contain mitochondrial nuclease in masked form. This nuclease was released by treatment with the non-ionic detergent NP-40 and rendered trypsin-sensitive. It was not removed appreciably from the nuclei by washing and sedimentation of the nuclei through a sucrose cushion. Levels of the mitochondrial nuclease were followed during drug-induced apoptosis. Time courses of apoptosis in cultures of HL-60 cells were monitored by flow cytometry of propidium iodide-stained cells and by agarose gel electrophoresis of extracted DNA. Changes in the inner mitochondrial transmembrane potential were monitored by flow cytometry of chloromethyl-X-Rosamine-stained cells. Apoptosis was induced by treatment with either the chemotherapeutic agent etoposide (VP-16 at 10 M) over an 8 h period or with the anti-rheumatic agent hydroxychloroquine (HCQ at 0.28 mM) over a 24 h period. These two drugs likely act in different pathways of apoptosis. VP-16 caused loss of the mitochondrial transmembrane potential 1.0–1.5 h before apoptosis was detected. On the other hand, treatment with HCQ caused these processes to occur in parallel possibly indicating that the mitochondrial changes are secondary events. No losses of masked mitochondrial nuclease were detected with either drug treatment during the course of apoptosis. HL-60 mitochondrial DNA was also not degraded during apoptosis induced by either agent. These observations likely explain why the mitochondrial DNA is not degraded and make it unlikely that mitochondrial nuclease plays any role in vivo in chromatin DNA fragmentation.  相似文献   

2.
To investigate ionizing radiation response, we screened genes that exhibit higher expression following gamma irradiation. We report here the isolation and functional characterization of a novel ionizing radiation-induced gene, AEN. Sequence analysis of AEN revealed exonuclease domain highly similar to that of exonuclease III. The AEN protein revealed DNase activity by cleaving various DNA substrates. Subcellular distribution of AEN exhibited nuclear colocalization with apoptotic nucleases such as CAD and AIF following irradiation. Moreover AEN distribution revealed perinuclear staining pattern which could be seen with other apoptotic nucleases. Irradiation of AEN-expressing cells resulted in synergistic increase of apoptosis whereas AEN deletion mutant in exonuclease domain did not. Our data, thus, suggest that radiation-induced AEN cleaves DNA in concert with other apoptotic nucleases and thereby enhances apoptosis following ionizing irradiation.  相似文献   

3.
Single-strand DNase and poly rAase, activities characteristic of endo-exonuclease, were co-activated in nuclear fractions of HL-60 cells by caspase-3. Activation was accompanied by cleavages of large soluble polypeptides (130–185 kDa) and a 65 kDa inactive chromatin-associated polypeptide related to the endo-exonuclease of Neurospora crassa as detected on immunoblots. The major products seen in vitro were a 77 kDa soluble polypeptide and an active chromatin-associated 34 kDa polypeptide. When HL-60 cells were induced to undergo apoptosis by treating with 50 M etoposide (VP-16) for 4 hours, 77 kDa and 40 kDa polypeptides accumulated in nuclear fractions. Chromatin DNA fragmentation activity was also activated in cytosol and nuclear extract either by pre-treating the cells in vivo with VP-16 or by treating the cytosol in vitro with caspase-3 or dATP and cytochrome c. Endo-exonuclease activated by caspase-3 in cytosol-derived fractions augmented chromatin DNA fragmentation activity in vitro. Endo-exonuclease is proposed to act in vivo in conjunction with the caspase-activated DNase (CAD) to degrade chromatin DNA during apoptosis of HL-60 cells.  相似文献   

4.
以灵杆菌基因组DNA为模板,PCR扩增非特异性核酸酶 (Non-specific nuclease,NU) 基因,并克隆到pMAL-c4X载体上构建重组表达载体pMAL-c4X-NU。经测序及 BLASTN发现其与灵杆菌Serratia marcescens核酸酶基因的同源性为97%。将构建的表达载体pMAL-c4X-NU转入大肠杆菌BL21,经IPTG诱导实现了胞内表达78 kDa的麦芽糖结合蛋白-NU融合蛋白 (Maltose-binding protein-NU,MBP-NU),其最佳诱导表达条件为37 ℃,0.75 mmol/L IPTG诱导1.5 h。用Amylose resin纯化得到了目的蛋白。活性检测表明MBP-NU具有同时降解DNA和RNA的活性,在37 ℃、pH 8.0时活性最高,比活力为1.11×106 U/mg,目标蛋白的纯化效率可达10.875 mg/L。纯化的目标蛋白中无蛋白酶活性存在。0.5 mmol/L乙二胺四乙酸 (Ethylene diamine tetraacetic acid,EDTA)、1 mmol/L苯甲基磺酰氟 (Phenylmethanesulfonyl fluoride,PMSF) 以及150 mmol/L KCl对MBP-NU的活性几乎无影响,因此MBP-NU可作为蛋白质纯化过程中核酸的高效降解酶。  相似文献   

5.
Comprehensive understanding of lineage differentiation and apoptosis processes is important to increase our knowledge of human preimplantation development in vitro. We know that BMP signaling is important for different processes during mammalian development. In mouse preimplantation embryos, BMP signaling has been shown to play a role in the differentiation into extra‐embryonic trophectoderm (TE) and primitive endoderm (PE). In this study, we aimed to investigate the effect of bone morphogenetic protein 4 (BMP4) supplementation on human preimplantation embryos cultured in vitro. The BMP4 treatment impaired human blastocyst formation. No differences in the expression of the early lineage markers NANOG, CDX2, GATA3, and GATA6 were found between BMP4‐treated embryos and controls. Instead, BMP4 supplementation triggered apoptosis in the human blastocyst. We focused on P53, which is known to play a major role in the apoptosis. In BMP4‐treated embryos, the P53 responsive gene expression was not altered; however, the P53 deacetylase SIRT1 was downregulated and acetylated P53 was increased in mitochondria. Altogether, our findings suggest that BMP4 plays a role in the apoptosis during human preimplantation development.  相似文献   

6.
The DNase domain-containing protein TATDN1 is a conserved nuclease in both prokaryotes and eukaryotes. It was previously implicated to play a role in apoptotic DNA fragmentation in yeast and C. elegans. However, its biological function in higher organisms, such as vertebrates, is unknown. Here, we report that zebrafish TATDN1 (zTATDN1) possesses a novel endonuclease activity, which first makes a nick at the DNA duplex and subsequently converts the nick into a DNA double-strand break in vitro. This biochemical property allows zTATDN1 to catalyze decatenation of catenated kinetoplast DNA to produce separated linear DNA in vitro. We further determine that zTATDN1 is predominantly expressed in eye cells during embryonic development. Knockdown of TATDN1 in zebrafish embryos results in an abnormal cell cycle progression, formation of polyploidy and aberrant chromatin structures. Consequently, the TATDN1-deficient morphants have disordered eye cell layers and significantly smaller eyes compared with the WT control. Altogether, our current studies suggest that zTATDN1 plays an important role in chromosome segregation and eye development in zebrafish.  相似文献   

7.
The DNase domain-containing protein TATDN1 is a conserved nuclease in both prokaryotes and eukaryotes. It was previously implicated to play a role in apoptotic DNA fragmentation in yeast and C. elegans. However, its biological function in higher organisms, such as vertebrates, is unknown. Here, we report that zebrafish TATDN1 (zTATDN1) possesses a novel endonuclease activity, which first makes a nick at the DNA duplex and subsequently converts the nick into a DNA double-strand break in vitro. This biochemical property allows zTATDN1 to catalyze decatenation of catenated kinetoplast DNA to produce separated linear DNA in vitro. We further determine that zTATDN1 is predominantly expressed in eye cells during embryonic development. Knockdown of TATDN1 in zebrafish embryos results in an abnormal cell cycle progression, formation of polyploidy and aberrant chromatin structures. Consequently, the TATDN1-deficient morphants have disordered eye cell layers and significantly smaller eyes compared with the WT control. Altogether, our current studies suggest that zTATDN1 plays an important role in chromosome segregation and eye development in zebrafish.  相似文献   

8.
[目的]克隆表达嗜热古菌Archaeoglobus fulgidus(A.fulgidus)来源的RecJ核酸酶基因(ORF编号AF_0699,NCBI数据库基因登陆号为AF_RS03550),对该重组蛋白的核酸酶活性及酶学特征进行鉴定和分析.[方法]将A.fulgidus RecJ(AfuRecJ)核酸酶在大肠杆菌中...  相似文献   

9.
10.
Abstract The unicellular cyanobacterium Microcystis aeruginosa K-81 has two types of restriction barrier, an extracellular nuclease and sequence-specific endonuclease. The nuclease was detected in the culture supernatant and it was easily released from the cells by washing with water or buffer containing Triton X-100. This nuclease was identified as a polypeptide of about 28 kDa that digested covalently closed circular and linear double-stranded DNAs, including chromosomal DNA from M. aeruginosa K-81. Among another 13 Microcystis strains examined, 3 produced an extracellular nuclease. Furthermore, M. aeruginosa K-81 contained two sequence-specific endonucleases, Mae K81I and Mae K81II, which were isoschizomers of Sp /I and Sau 96I, respectively.  相似文献   

11.
AIMS: Nuclease secretion was evaluated for five species of Lactobacillus and the activity was characterized in terms of thermal resistance, molecular weight and mode of action on plasmid DNA. METHODS AND RESULTS: Assays of nuclease from L. rhamnosus ATCC 9595 on DNA of different origins indicates a broad activity spectrum. Secreted nuclease from this strain resists a thermal treatment of 20 min at 100 degrees C, is not sensitive to a treatment for disruption of disulphide bonds nor to EDTA treatment under 10 mM l(-1). Nuclease production is not growth linked and seems to be constitutive. Extracellular nuclease of L. rhamnosus ATCC 9595 introduces a single-stranded nick in supercoiled DNA, thus potentially reducing the transformability of plasmid DNA. In seven of eight tested strains, SDS-PAGE revealed a major protein with a molecular weight of ca 35 kDa. Minor degradation products also showed nuclease activity. CONCLUSIONS: A comparative analysis of the extracellular fractions of 14 different Lactobacillus strains indicate that nuclease secretion seems to be a widely distributed function among species of milk-related lactobacilli. The production of secreted nuclease may contribute to the low ability of Lactobacillus spp. to be transformed and maintain exogenous DNA. SIGNIFICANCE AND IMPACT OF THE STUDY: Determination of the characteristics and distribution of nuclease activity contribute to developing strategies to overcome this barrier to efficient transformation of milk lactobacilli.  相似文献   

12.
p38 MAPK is mainly activated by stress stimuli and mediates signals that regulate various cellular responses, including cell-cycle progression and apoptosis, depending on cell types and stimuli. Here we examine the role of p38 in regulation of apoptosis and cell cycle checkpoint in Daudi B-cell lymphoma cells treated with the topoisomerase II inhibitor etoposide. Etoposide activated p38, inhibited the G2/M transition with the persistent inhibitory phosphorylation of Cdc2 on Tyr15, and caused apoptosis of Daudi cells. Inducible expression of a dominant negative p38α mutant in Daudi cells reduced the inhibition of Cdc2 as well as G2/M arrest and augmented apoptosis induced by etoposide. SB203580, a specific inhibitor of p38α and p38β, similarly reduced the inhibitory phosphorylation of Cdc2 as well as G2/M arrest and augmented apoptosis of Daudi cells treated with etoposide. These results suggest that p38 plays a role in G2/M checkpoint activation through induction of the persistent inhibitory phosphorylation of Cdc2 and, thereby, inhibits apoptosis of Daudi cells treated with etoposide. The present study, thus, raises the possibility that p38 may represent a new target for sensitization of lymphoma cells to DNA-damaging chemotherapeutic agents.  相似文献   

13.
ABSTRACT

To elucidate the underlying mechanism of secretory leukocyte protease inhibitor (SLPI)-induced cell migration, we compared SLPI-deleted human gingival carcinoma Ca9-22 (ΔSLPI) cells and original (wild-type: wt) Ca9-22 cells using several microscopic imaging methods and gene expression analysis. Our results indicated reduced migration of ΔSLPI cells compared to wtCa9-22 cells. The lamellipodia/dorsal ruffles were smaller and moved slower in ΔSLPI cells compared to wtCa9-22 cells. Furthermore, well-developed intermediate filament bundles were observed at the desmosome junction of ΔSLPI cells. In addition, Galectin4 was strongly expressed in ΔSLPI cells, and its forced expression suppressed migration of wtCa9-22 cells. Taken together, SLPI facilitates cell migration by regulating lamellipodia/ruffles and desmosomes, in which Galectin4 plays an important role.  相似文献   

14.
An extracellular nuclease from Streptomyces thermonitrificans (designated as nuclease Stn alpha) was purified to homogeneity with an overall yield of 2.8%. The Mr of the purified enzyme was 39.6 kDa. The purified enzyme showed an exclusive requirement of Mn2+ for its activity but is not a metalloprotein. The optimum pH for ds- and ssDNA hydrolysis were 7.0 and 7.5 whereas, the optimum temperature was 40 and 45 degrees C, respectively. The enzyme was inhibited by divalent cations, inorganic phosphate and pyrophosphate but not by 3' and 5' mononucleotides. Nuclease Stn alpha is a multifunctional enzyme and its substrate specificity is in the order of dsDNA>ssDNA>RNA. The end products of both ds- and ssDNA hydrolysis were predominantly oligonucleotides (80-85%) and a small amount of 3' mononucleotides (10-15%) suggesting an endo mode of action.  相似文献   

15.
【背景】Cas9核酸酶是一种RNA引导的核酸内切酶,可与单链向导RNA (single-guide RNA,sgRNA)形成稳定的核糖核蛋白复合物,识别和切割特定的核苷酸片段。由于其具备高灵活性和高效率的特点,目前已经成为基础科学研究领域和临床治疗方法中使用最广泛的基因编辑工具。【目的】为Cas9核酸酶的合理开发和利用提供理论依据。【方法】利用大肠杆菌表达系统表达野生型酿脓链球菌(Streptococcus pyogenes) Cas9核酸酶,经硫酸铵沉淀和镍柱亲和层析两步纯化获得较高纯度表达产物,并对其热稳定性、pH稳定性、金属离子的影响等酶学特性进行研究。【结果】经高密度发酵后,大肠杆菌湿菌重达191.0 g/L。纯化后酿脓链球菌Cas9核酸酶的比酶活达641.29 U/mg,纯化倍数为16.02,收率为46.40%。Cas9核酸酶在25-42°C保温2 h后剩余酶活保持在65%以上,而在45°C保温15 min后全部失活;其在pH 6.0-10.0范围内稳定性较高,剩余酶活大于68%,在pH9.0时稳定性最高;0.5-20.0mmol/L浓度范围内的Mg2+...  相似文献   

16.
Mycobacterial ESX systems are often related to pathogenesis during infection. However, little is known about the function of ESX systems of Mycobacterium abscessus (Mab). This study focuses on the Mab ESX-3 cluster, which contains major genes such as esxH (Rv0288, low molecular weight protein antigen 7; CFP-7) and esxG (Rv0287, ESAT-6 like protein). An esx-3 (MAB 2224c-2234c)-deletional mutant of Mab (Δesx) was constructed and used to infect murine and human macrophages. We then investigated whether Mab Δesx modulated innate host immune responses in macrophages. Mab Δesx infection resulted in less pathological and inflammatory responses. Additionally, Δesx resulted in significantly decreased activation of inflammatory signaling and cytokine production in macrophages compared to WT. Moreover, recombinant EsxG·EsxH (rEsxGH) proteins encoded by the ESX-3 region showed synergistic enhancement of inflammatory cytokine generation in macrophages infected with Δesx. Taken together, our data suggest that Mab ESX-3 plays an important role in inflammatory and pathological responses during Mab infection.  相似文献   

17.
We have addressed the association between the site of DNA cleavage during apoptosis and DNA replication. DNA double strand breaks were introduced into chromatin containing pulse labeled nascent DNA by the induction of apoptosis or autocleavage of isolated nuclei. The location of these breaks in relation to nascent DNA were revealed by Bal 31 exonuclease digestion at the cut sites. Our data show that Bal31 accessible cut sites are directly linked to regions enriched in nascent DNA. We suggest that these regions coincide with the termini of replication domains, possibly linked by strong DNA-matrix interactions with biophysically defined topological structures of 0.5 - 1.3 Mbp in size. The 50 kbp fragments that are commonly observed as products of apoptosis are also enriched in nascent DNA within internal regions but not at their termini. It is proposed that these fragments contain a subset of replicon DNA that is excised during apoptosis through recognition of their weak attachment to the nuclear matrix within the replication domain.J. Cell. Biochem. 70:604-615, 1998. © 1998 Wiley-Liss, Inc. © 1998 Wiley-Liss, Inc.  相似文献   

18.
Sphingolipids, a class of bioactive lipids found in cell membranes, can modulate the biophysical properties of the membranes and play a critical role in signal transduction. Sphingolipids are involved in autophagy in humans and yeast, but their role in autophagy in plants is not well understood. In this study, we reported that the AtACER, an alkaline ceramidase that hydrolyses ceramide to long‐chain base (LCB), functions in autophagy process in Arabidopsis. Our empirical data showed that the loss of AtACER inhibited autophagy, and its overexpression promoted autophagy under nutrient, salinity, and oxidative stresses. Interestingly, nitrogen deprivation significantly affected the sphingolipid's profile in Arabidopsis thaliana, especially the LCBs. Furthermore, the exogenous application of LCBs also induced autophagy. Our findings revealed a novel function of AtACER, where it was found to involve in the autophagy process, thus, playing a crucial role in the maintenance of a dynamic loop between sphingolipids and autophagy for cellular homeostasis under various environmental stresses.  相似文献   

19.
20.
Protein–protein interaction is a fundamental process in all major biological processes. The hexameric Tim9–Tim10 (translocase of inner membrane) complex of the mitochondrial intermembrane space plays an essential chaperone‐like role during import of mitochondrial membrane proteins. However, little is known about the functional mechanism of the complex because the interaction is weak and transient. This study investigates how electrostatic and hydrophobic interactions affect the conformation and function of the complex at physiological temperatures, using both experimental and computational methods. The results suggest that, first, different complex conformational states exist at equilibrium, and the major difference between these states is the degree of hydrophobic interactions. Second, the conformational change mimics the biological activity of the complex as measured by substrate binding at the same temperatures. Finally, molecular dynamics simulation and detailed energy decomposition analysis provided supporting evidence at the atomic level for the presence of an excited state of the complex, the formation of which is largely driven by the disruption of hydrophobic interactions. Taken together, this study indicates that the dynamics of the hydrophobic residues plays an important role in regulating the function of the Tim9–Tim10 complex. Proteins 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号