首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phagocytosis plays a major role in the defence of higher organisms against microbial infection not only by allowing ingested microbes to be destroyed by microbicidal mechanisms, but also by providing the basis for processing of their antigens to forms that generate immune responses. This article examines the role of the phagolysosome in antigen processing, and discusses the contributions of both MHC class II and MHC class I molecules to the presentation of antigens derived from phagocytosed material.  相似文献   

2.
Mycobacterium tuberculosis is a facultative intracellular pathogen that inhibits phagosome maturation in macrophages thereby securing survival and growth. Mycobacteria reside in an early endocytic compartment of near-neutral pH where they upregulate production of complex glycolipids such as trehalose dimycolate. Here, we report that trehalose dimycolate coated onto beads increased the bead retention in early phagosomes, i.e. at a similar stage as viable mycobacteria. Thus, a single mycobacterial lipid sufficed to divert phagosome maturation and likely contributes to mycobacterial survival in macrophages. Previous studies showed that activated macrophages promote maturation of mycobacterial phagosomes and eliminate mycobacteria through bactericidal effectors including nitric oxide generated by inducible nitric-oxide synthase. We show that deceleration of bead phagosome maturation by trehalose dimycolate was abolished in immune-activated wild type, but not in activated nitric-oxide synthase-deficient macrophages, nor when hydroxyl groups of trehalose dimycolate were chemically modified by reactive nitrogen intermediates. Thus, specific host defence effectors of activated macrophages directly target a specific virulence function of mycobacteria.  相似文献   

3.
The presentation of peptides by class I histocompatibility molecules plays a central role in the cellular immune response to virally infected or transformed cells. The main steps in this process include the degradation of both self and 'foreign' proteins to short peptides in the cytosol, translocation of peptides into the lumen of the endoplasmic reticulum, binding of a subset of peptides to assembling class I molecules and expression of class-I-peptide complexes at the cell surface for examination by cytotoxic T cells. A molecular understanding of most of these steps is emerging, revealing a remarkable coordination between the processes of peptide translocation, delivery and binding to class I molecules.  相似文献   

4.
Mycobacterium avium subsp hominissuis (M. avium) is a pathogen that infects and survives in macrophages. Previously, we have identified the M. avium MAV_2941 gene encoding a 73 amino acid protein exported by the oligopeptide transporter OppA to the macrophage cytoplasm. Mutations in MAV_2941 were associated with significant impairment of M. avium growth in THP-1 macrophages. In this study, we investigated the molecular mechanism of MAV_2941 action and demonstrated that MAV_2941 interacts with the vesicle trafficking proteins syntaxin-8 (STX8), adaptor-related protein complex 3 (AP-3) complex subunit beta-1 (AP3B1) and Archain 1 (ARCN1) in mononuclear phagocytic cells. Sequencing analysis revealed that the binding site of MAV_2941 is structurally homologous to the human phosphatidylinositol 3-kinase (PI3K) chiefly in the region recognized by vesicle trafficking proteins. The β3A subunit of AP-3, encoded by AP3B1, is essential for trafficking cargo proteins, including lysosomal-associated membrane protein 1 (LAMP-1), to the phagosome and lysosome-related organelles. Here, we show that while the heat-killed M. avium when ingested by macrophages co-localizes with LAMP-1 protein, transfection of MAV_2941 in macrophages results in significant decrease of LAMP-1 co-localization with the heat-killed M. avium phagosomes. Mutated MAV_2941, where the amino acids homologous to the binding region of PI3K were changed, failed to interact with trafficking proteins. Inactivation of the AP3B1 gene led to alteration in the trafficking of LAMP-1. These results suggest that M. avium MAV_2941 interferes with the protein trafficking within macrophages altering the maturation of phagosome.  相似文献   

5.
Serum, but not epidermal growth factor (EGF), stimulated the release of radiolabeled inositol phosphates from human embryo palate mesenchyme (HEPM) cells prelabeled with [3H]-myoinositol. Pretreatment of cells with 10(-6) M dexamethasone (DEX) for 48 h had no effect on the release of inositol phosphates in response to serum. Furthermore, although treatment of the glucocorticoid-sensitive A/J strain of mouse embryo palate mesenchyme (MEPM) cells with 10(-6) M DEX inhibited their proliferation by 40%, it had no effect on the activity of phospholipase(s) C. However, DEX did enhance the incorporation of [3H]-myoinositol into membrane lipids. We interpret these data to mean that 1) serum factors enhance metabolism of inositol lipids in HEPM cells, 2) DEX does not interfere with the primary events by which agonists utilize metabolism of inositol lipids as a mechanism for transmembrane signaling, and 3) DEX may affect synthesis of phosphoinositides, as reported by Grove et al. (Biochem. Biophys. Res. Commun. 110:200-207, 1983; J. Craniofac. Genet. Dev. Biol. Suppl. 2:285-292, 1986).  相似文献   

6.
The effects of 1-deoxynojirimycin (dNM) and 1-deoxymannojirimycin (dMM), inhibitors of oligosaccharide trimming glucosidase I and mannosidase I, respectively, on the biosynthesis of vesicular stomatitis virus G protein, influenza virus hemagglutinin, and human class I histocompatibility antigens were investigated. Although the oligosaccharides of these membrane glycoproteins were greatly altered, neither dNM nor dMM interferred with their surface expression, as determined by a variety of assays, including accessibility to proteases and antibodies; neither did these drugs inhibit production of infectious virus particles.  相似文献   

7.
8.
Tuberculosis remains a serious global health threat with nearly 10 million new cases and 1.7 million deaths every year. The emergence of multi-drug resistant (MDR) and extensively drug resistant (XDR) strains of Mycobacterium tuberculosis (Mtb) further complicates this problem. It is pressing to find new ways to combat Mtb. The success of Mtb is largely attributed to its ability to persist within macrophages by arresting phagosomal maturation. The bacterial proteins and lipids play important roles in this inhibition which involves several aspects of phagosomal maturation, including both fusion and fission events and recruitment of V-ATPases allowing acidification. Understanding the interaction between the pathogen and host macrophage is essential to eradicate or control tuberculosis. This review focuses on the mechanism of phagolysosome formation, the pivotal event for the fates of infection participants and abundance of novel drug targets.  相似文献   

9.
Pathogenic mycobacteria such as Mycobacterium tuberculosis and Mycobacterium avium facilitate disease by surviving intracellularly within a potentially hostile environment: the macrophage phagosome. They inhibit phagosome maturation processes, including fusion with lysosomes, acidification and, as shown here, membrane actin assembly. An in vitro assay developed for latex bead phagosomes (LBPs) provided insights into membrane signalling events that regulate phagosome actin assembly, a process linked to membrane fusion. Different lipids were found to stimulate or inhibit actin assembly by LBPs and mycobacterial phagosomes in vitro. In addition, selected lipids activated actin assembly and phagosome maturation in infected macrophages, resulting in a significant killing of M. tuberculosis and M. avium. In contrast, the polyunsaturated sigma-3 lipids behaved differently and stimulated pathogen growth. Thus, lipids can be involved in both stimulatory and inhibitory signalling networks in the phagosomal membrane.  相似文献   

10.
Major histocompatibility complex (MHC) class II (MHCII) is constitutively expressed by immature dendritic cells (DC), but has a short half-life as a consequence of its transport to and degradation in lysosomes. For its transfer to lysosomes, MHCII is actively sorted to the intraluminal vesicles (ILV) of multivesicular bodies (MVB), a process driven by its ubiquitination. ILV have, besides their role as an intermediate compartment in lysosomal transfer, also been proposed to function as a site for MHCII antigen loading and temporal storage. In that scenario, DC would recruit antigen-loaded MHCII to the cell surface in response to a maturation stimulus by allowing ILV to fuse back with the MVB delimiting membrane. Other studies, however, explained the increase in cell surface expression during DC maturation by transient upregulation of MHCII synthesis and reduced sorting of newly synthesized MHCII to lysosomes. Here, we have characterized the relative contributions from the biosynthetic and endocytic pathways and found that the vast majority of antigen-loaded MHCII that is stably expressed at the plasma membrane by mature DC is synthesized after exposure to inflammatory stimuli. Pre-existing endosomal MHCII contributed only when it was not yet sorted to ILV at the moment of DC activation. Together with previous records, our current data are consistent with a model in which passage of MHCII through ILV is not required for antigen loading in maturing DC and in which sorting to ILV in immature DC provides a one-way ticket for lysosomal degradation.  相似文献   

11.
Fish blood erythrocytes are frequently used as sentinels in biomonitoring studies. Usually, fish blood is collected by painful cardiac or caudal vein punctures. Previous anesthesia could decrease animal suffering but it is not known at present whether anesthesia can cause confounding effects. Therefore, using the alkaline single cell gel (SCG)/comet assay with blood erythrocytes of the cichlid fish Nile tilapia, we tested for a possible modulation of induced DNA damage (methyl methanesulfonate; MMS) by the anesthetic benzocaine administered by bath exposure (80mg/l for approximately 10min). Furthermore, benzocaine (80-600mg/l) was tested for its genotoxic potential on fish erythrocytes in vitro and for potential interactions with two known genotoxins (MMS and hydrogen peroxide). Our results did neither indicate a significant increase in the amount of DNA damage (even after a 48h follow-up), nor indicated interactions with MMS-induced DNA damage when fish were exposed to benzocaine in vivo. There was also no increase in DNA damage after in vitro exposure of fish erythrocytes to benzocaine. Clear concentration-related effects were observed for the two genotoxins in vitro, which were not significantly altered by the presence of benzocaine. These results suggest that anesthesia of fish does not confound comet assay results and the use of blood samples from anesthetized fish can be recommended with regard to animal welfare.  相似文献   

12.
13.
The mycobacterial cell wall component lipoarabinomannan (LAM) has been described as one of the key virulence factors of Mycobacterium tuberculosis. Modification of the terminal arabinan residues of this lipoglycan with mannose caps in M. tuberculosis or with phosphoinositol caps in Mycobacterium smegmatis results in distinct host immune responses. Given that M. tuberculosis typically persists in the phagosomal vacuole after being phagocytosed by macrophages, we performed a proteomic analysis of that organelle after treatment of macrophages with LAMs purified from the two mycobacterial species. The quantitative changes in phagosomal proteins suggested a distinct role for mannose-capped LAM in modulating protein trafficking pathways that contribute to the arrest of phagosome maturation. Enlightened by our proteomic data, we performed further experiments to show that only the LAM from M. tuberculosis inhibits accumulation of autophagic vacuoles in the macrophage, suggesting a new function for this virulence-associated lipid.  相似文献   

14.
15.
It is widely appreciated that inflammatory responses in peripheral tissues are usually associated to the development of acidic microenvironments. Despite this, there are few studies aimed to analyze the effect of extracellular pH on immune cell functions. We analyzed the impact of acidosis on the behavior of dendritic cells (DCs) derived from murine bone marrow. We found that extracellular acidosis (pH 6.5) markedly stimulated the uptake of FITC-OVA, FITC-dextran, and HRP by DCs. In fact, to reach similar levels of endocytosis, DCs cultured at pH 7.3 required concentrations of Ag in the extracellular medium almost 10-fold higher compared with DCs cultured at pH 6.5. Not only the endocytic capacity of DCs was up-regulated by extracellular acidosis, but also the expression of CD11c, MHC class II, CD40, and CD86 as well as the acquisition of extracellular Ags by DCs for MHC class I-restricted presentation. Importantly, DCs pulsed with Ag under acidosis showed an improved efficacy to induce both specific CD8(+) CTLs and specific Ab responses in vivo. Our results suggest that extracellular acidosis improves the Ag-presenting capacity of DCs.  相似文献   

16.
Following uptake by macrophages, live mycobacteria initially reside within an immature phagosome that resists acidification and retains access to recycling endosomes. Glycolipids are exported from the mycobacterial phagosome and become available for immune recognition by CD1-restricted T cells. The aim of this study was to explore the possibility that lipoproteins might similarly escape from the phagosome and act as immune targets in cells infected with live mycobacteria. We have focused on a 19-kDa lipoprotein from Mycobacterium tuberculosis that was previously shown to be recognized by CD8(+) T cells. The 19-kDa Ag was found to traffic separately from live mycobacteria within infected macrophages by a pathway that was dependent on acylation of the protein. When expressed as a recombinant protein in rapid-growing mycobacteria, the 19-kDa Ag was able to deliver peptides for recognition by MHC class I-restricted T cells by a TAP-independent mechanism. Entry into the class I pathway was rapid, dependent on acylation, and could be blocked by killing the mycobacteria by heating before infection. Although the pattern of 19-kDa trafficking was similar with different mycobacterial species, preliminary experiments suggest that class I presentation is more efficient during infection with rapid-growing mycobacteria than with the slow-growing bacillus Calmette-Guérin vaccine strain.  相似文献   

17.
Vacuolar alternate class I MHC (MHC-I) Ag processing allows presentation of exogenous Ag by MHC-I molecules with binding of antigenic peptides to post-Golgi MHC-I molecules. We investigated the role of previously bound peptides and their dissociation in generating peptide-receptive MHC-I molecules. TAP1-knockout macrophages were incubated overnight with an initial exogenous peptide, producing a large cohort of peptide-K(b) complexes that could influence subsequent peptide dissociation/exchange. Initial incubation with FAPGNYPAL, KVVRFDKL, or RGYVYQGL enhanced rather than reduced subsequent binding and presentation of a readout peptide (SIINFEKL or FAPGNYPAL) to T cells. Thus, K(b) molecules may be stabilized by an initial (stabilizing) peptide, enhancing their ability to bind readout peptide and implicating peptide dissociation/exchange. In contrast, incubation with SIINFEKL as stabilizing peptide reduced presentation of readout peptide. SIINFEKL-K(b) complexes were more stable than other peptide-K(b) complexes, which may limit their contribution to peptide exchange. Stabilizing peptides (FAPGNYPAL, KVVRFDKL, or RGYVYQGL) enhanced alternate MHC-I processing of HB101.Crl-OVA (Escherichia coli expressing an OVA fusion protein), indicating that alternate MHC-I Ag processing involves peptide dissociation/exchange. Stabilizing peptide enhanced processing of HB101.Crl-OVA more than presentation of exogenous OVA peptide (SIINFEKL), suggesting that peptide dissociation/exchange may be enhanced in the acidic phagosomal processing environment. Furthermore, exposure of cells to acidic pH increased subsequent binding and presentation of readout peptide. Thus, peptide dissociation/exchange contributes to alternate MHC-I Ag processing and may be influenced by both stability of peptide-MHC-I complexes and pH.  相似文献   

18.
Genetic modification of vaccines by linking the Ag to lysosomal or endosomal targeting signals has been used to route Ags into MHC class II processing compartments for improvement of CD4+ T cell responses. We report in this study that combining an N-terminal leader peptide with an MHC class I trafficking signal (MITD) attached to the C terminus of the Ag strongly improves the presentation of MHC class I and class II epitopes in human and murine dendritic cells (DCs). Such chimeric fusion proteins display a maturation state-dependent subcellular distribution pattern in immature and mature DCs, mimicking the dynamic trafficking properties of MHC molecules. T cell response analysis in vitro and in mice immunized with DCs transfected with Ag-encoding RNA showed that MITD fusion proteins have a profoundly higher stimulatory capacity than wild-type controls. This results in efficient expansion of Ag-specific CD8+ and CD4+ T cells and improved effector functions. We used CMVpp65 and NY-ESO-1 Ags to study preformed immune responses in CMV-seropositive individuals and cancer patients. We show that linking these Ags to the MITD trafficking signal allows simultaneous, polyepitopic expansion of CD8+ and CD4+ T cells, resulting in distinct CD8+ T cell specificities and a surprisingly broad and variable Ag-specific CD4+ repertoire in different individuals.  相似文献   

19.
Phagosomal biogenesis is a fundamental biological process of particular significance for the function of phagocytic and antigen-presenting cells. The precise mechanisms governing maturation of phagosomes into phagolysosomes are not completely understood. Here, we applied the property of pathogenic mycobacteria to cause phagosome maturation arrest in infected macrophages as a tool to dissect critical steps in phagosomal biogenesis. We report the requirement for 3-phosphoinositides and acquisition of Rab5 effector early endosome autoantigen (EEA1) as essential molecular events necessary for phagosomal maturation. Unlike the model phagosomes containing latex beads, which transiently recruited EEA1, mycobacterial phagosomes excluded this regulator of vesicular trafficking that controls membrane tethering and fusion processes within the endosomal pathway and is recruited to endosomal membranes via binding to phosphatidylinositol 3-phosphate (PtdIns[3]P). Inhibitors of phosphatidylinositol 3'(OH)-kinase (PI-3K) activity diminished EEA1 recruitment to newly formed latex bead phagosomes and blocked phagosomal acquisition of late endocytic properties, indicating that generation of PtdIns(3)P plays a role in phagosomal maturation. Microinjection into macrophages of antibodies against EEA1 and the PI-3K hVPS34 reduced acquisition of late endocytic markers by latex bead phagosomes, demonstrating an essential role of these Rab5 effectors in phagosomal biogenesis. The mechanism of EEA1 exclusion from mycobacterial phagosomes was investigated using mycobacterial products. Coating of latex beads with the major mycobacterial cell envelope glycosylated phosphatidylinositol lipoarabinomannan isolated from the virulent Mycobacterium tuberculosis H37Rv, inhibited recruitment of EEA1 to latex bead phagosomes, and diminished their maturation. These findings define the generation of phosphatidylinositol 3-phosphate and EEA1 recruitment as: (a) important regulatory events in phagosomal maturation and (b) critical molecular targets affected by M. tuberculosis. This study also identifies mycobacterial phosphoinositides as products with specialized toxic properties, interfering with discrete trafficking stages in phagosomal maturation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号