首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kainate receptors are ionotropic glutamate receptors located postsynaptically, mediating frequency-dependent transmission, and presynaptically, modulating transmitter release. In contrast to the excitatory postsynaptic kainate receptors, presynaptic kainate receptor can also be inhibitory and their effects may involve a metabotropic action. Arachidonic acid (AA) modulates most ionotropic receptors, in particular postsynaptic kainate receptor-mediated currents. To further explore differences between pre- and postsynaptic kainate receptors, we tested if presynaptic kainate receptors are affected by AA. Kainate (0.3-3 microM) and the kainate receptor agonist, domoate (60-300 nM), inhibited by 19-54% the field excitatory postsynaptic potential (fEPSP) slope in rat CA1 hippocampus, and increased by 12-32% paired-pulse facilitation (PPF). AA (10 microM) attenuated by 37-72% and by 62-66% the domoate (60-300 nM)-induced fEPSP inhibition and paired-pulse facilitation increase, respectively. This inhibition by AA was unaffected by cyclo- and lipo-oxygenase inhibitors, indomethacin (20 microM) and nordihydroguaiaretic acid (NDGA, 50 microM) or by the free radical scavenger, N-acetyl-L-cysteine (0.5 mM). The K+ (20 mM)-evoked release of [3H]glutamate from superfused hippocampal synaptosomes was inhibited by 18-39% by domoate (1-10 microM), an effect attenuated by 35-63% by AA (10 microM). Finally, the KD (40-55 nM) of the kainate receptor agonist [3H]-(2S,4R)-4-methylglutamate ([3H]MGA) (0.3-120 nM) binding to hippocampal synaptosomal membranes was increased by 151-329% by AA (1-10 microM). These results indicate that AA directly inhibits presynaptic kainate receptor controlling glutamate release in the CA1 area of the rat hippocampus.  相似文献   

2.
We report that kainate receptors are present on presynaptic GABAergic terminals contacting interneurons and that their activation increases GABA release. Application of kainate increased the frequency of miniature inhibitory postsynaptic currents recorded in CA1 interneurons. Local applications of glutamate but not of AMPA or NMDA also increased GABA quantal release. Application of kainate as well as synaptically released glutamate reduced the number of failures of GABAergic neurotransmission between interneurons. Thus, activation of presynaptic kainate receptors increases the probability of GABA release at interneuron-interneuron synapses. Glutamate may selectively control the communication between interneurons by increasing their mutual inhibition.  相似文献   

3.
1. The effects of the excitatory amino acid agonists kainate (KA), quisqualate (QUIS), and N-methyl-D-aspartate (NMDA) were studied in vitro on the hemisected frog spinal cord. 2. Prolonged (1.0 hr) application of excitatory amino acid agonists (KA, 50 or 300 microM; QUIS, 30 microM; NMDA, 300 microM) significantly reduced the ventral root potentials (VRPs) and [K+]0 evoked by a dorsal root tetanus (10 sec, 25 Hz), by brief (10 sec) applications of the same agonists (KA, 30 microM; QUIS, 30 microM; NMDA, 300 microM), and by GABA (10 sec, 1.0 mM). 3. The effect was essentially irreversible and persisted despite 2-4 hr of washing. 4. Excitatory amino acid antagonists (APV, 30 microM and kynurenate, 2 mM) blocked the neurotoxic effects of the excitatory agonists NMDA and KA respectively, an observation which indicates the observed effects of the agonists require the activation of specific excitatory receptors. 5. TTX did not alter the neurotoxic effects of KA suggesting that interneuronal firing does not contribute to the observed changes. 6. Addition of high K+ did not duplicate the effect of prolonged excitatory amino acid agonist exposure, an indication that elevation of K+ does not cause the decreased responses. 7. Light microscopy did not provide any evidence of gross tissue damage. 8. The parallel reduction of postsynaptic responses and delta [K+]0 support the idea that elevation of extracellular [K+] by afferent stimuli results from interneuronal activity.  相似文献   

4.
The excitatory amino acid agonists kainate, N-methyl-D-aspartate (NMDA), and quisqualate inhibited ligand-stimulated phosphoinositide hydrolysis in rat cortical slices. The NMDA channel blocker MK-801 antagonized the inhibition by NMDA but had no effect on the inhibition due to kainate or quisqualate. The antagonist 6-cyano-7-nitroquinoxaline-2,3-dione blocked the effects of quisqualate and kainate but not the effect of NMDA. These data indicate that activation of the NMDA, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid, and kainate types of ionotropic receptors has the same effect. In membranes prepared from cortical slices, there was no inhibition of carbachol-stimulated phosphoinositidase C activity by excitatory amino acids, suggesting that excitatory amino acids indirectly affect carbachol-stimulated phosphoinositide hydrolysis. The inhibition by excitatory amino acids of carbachol-stimulated phosphoinositide breakdown was dependent on extracellular Mg2+ and was abolished by procedures that increase intracellular Ca2+. Veratridine inhibition of carbachol-stimulated phosphoinositide hydrolysis was reversed by ouabain but not by other procedures that increase intracellular Ca2+. In contrast to excitatory amino acids, veratridine potentiated carbachol-stimulated phosphoinositide breakdown in the presence of 10 mM extracellular Mg2+. These data suggest that excitatory amino acids inhibit carbachol-stimulated phosphoinositide breakdown in rat cortex by lowering intracellular Ca2+ through a mechanism dependent on extracellular Mg2+.  相似文献   

5.
The aim of the present study was to determine whether endogenous amino acids are released from type-1 and type-2 astrocytes following non-N-methyl-D-aspartate (NMDA) receptor activation and whether such release is related to cell swelling. Amino acid levels and release were measured by HPLC in secondary cultures from neonatal rat cortex, highly enriched in type-1 or type-2 astrocytes. The following observations were made. (a) The endogenous level of several amino acids (glutamate, alanine, glutamine, asparagine, taurine, serine, and threonine) was substantially higher in type-1 than in type-2 astrocytes. (b) The spontaneous release of glutamine and taurine was higher in type-1 than in type-2 astrocytes; that of other amino acids was similar. (c) Exposure of type-2 astrocyte cultures to 50 microM kainate or quisqualate doubled the release of glutamate and caused a lower, but significant increase in that of aspartate, glycine, taurine, alanine, serine (only in the case of kainate), and glutamine (only in the case of quisqualate). These effects were reversed by the antagonist CNQX. (d) Exposure of type-1 astrocyte cultures to 50-200 microM kainate or 50 microM quisqualate did not affect endogenous amino acid release, even after treating the cultures with dibutyryl cyclic AMP. (e) Exposure of type-1 or type-2 astrocyte cultures to 50 mM KCl (replacing an equimolar concentration of NaCl) enhanced the release of taurine greater than glutamate greater than aspartate. The effect was somewhat more pronounced in type-2 than in type-1 astrocytes. Veratridine (50 microM) did not cause any increase in amino acid release. (f) The release of amino acids induced by high [K+] appeared to be related to cell swelling, in both type-1 and type-2 astrocytes. Swelling and K(+)-induced release were somewhat higher in type-2 than in type-1 astrocytes. In contrast, neither kainate nor quisqualate caused any appreciable increase in cell volume. It is concluded that non-NMDA receptor agonists stimulate the release of several endogenous amino acids (some of which are neuroactive) from type-2 but not from type-1 astrocytes. The effect does not seem to be related to cell swelling, which causes a different release profile in both type-1 and type-2 astrocytes. The absence of kainate- and quisqualate-evoked release in type-1 astrocytes suggests that the density of non-NMDA receptors in this cell type is very low.  相似文献   

6.
The effects of the excitatory amino acid analogs kainate (KA) and N-methyl- -aspartate (NMDA) on release of amino acids from astrocytes in primary culture were investigated. Under basal conditions, glutamine was present in the medium at 15 μM. The levels of serine and taurine were 1.5 and 2.0 μM, respectively, while the concentration of other amino acids was below 1 μM. At 10 μM, KA did not affect amino acid release, whereas 100 μM KA enhanced glutamine release by 34% and taurine release by 85%. At 1 mM, KA stimulated the release of all amino acids measured. However, while most amino acids increased by 50–150%, glutamate and aspartate were elevated by more than 3000%. The effect of KA was greatly reduced by 1 mM kynurenate, an excitatory amino acid receptor antagonist. 1 mM NMDA did not stimulate amino acid release from the cultures. The results indicate that astrocytes are endowed with KA-receptive sites, but they do not seem to possess NMDA receptors.  相似文献   

7.
Using neurotoxicity and inositol phosphate release as criteria for receptor expression, we report the differential expression of excitatory amino acid receptor subtypes in cerebellar granule cells grown in serum-free media containing either high (25 mM) or low (5 mM) KCl. NMDA receptors are expressed in neurons grown in high, but not low, KCl. In contrast, ionotropic quisqualate receptors are expressed in neurons grown in low KCl, but not in those grown in high KCl. Addition of NMDA to cultures containing low KCl appears to mimic high KCl conditions: NMDA receptors are expressed, but ionotropic quisqualate receptors are not. Glutamate and kainate are toxic to cells grown in either condition.  相似文献   

8.
Effects of metabotropic glutamate receptors of the duration of posttetanic changes in monosynaptic excitatory postsynaptic potentials (mEPSP), evoked by afferent and reticulospinal input stimulation, were investigated in lumbar motoneurons of the frog isolated spinal cord. It was found that application of MAP4 (25 microM), a selective antagonist of group III of these receptors, prolonged posttetanic potentiation and depression of synaptic transmission, whereas activation of this group of metabotropic glutamate receptors by L-AP4 (1 mM), a selective agonist of these receptors, suppressed the amplitude of synaptic responses, but did not affect the dynamics of development of posttetanic changes. The NMDA receptor antagonist AP5 (50 microM), added to the perfusing solution, blocked completely the effects produced by MAP4. Neither selective antagonist MCCG (400 microM), nor agonist tACPD (50 microM) of group II metabotropic glutamate receptors affected the terms of mEPSP posttetanic potentiation and depression, although the latter, in contrast to the antagonist, in most cases increased the synaptic potential amplitude. The data obtained permit to suggest that group III metabotropic receptors may control the duration of posttetanic changes of synaptic transmission in the frog spinal motoneurons. The long-term changes in the investigated synapses seem to be mediated by activation of postsynaptic metabotropic glutamate receptors (most likely, of group I receptors), which is normally masked with activation of group III presynaptic autoreceptors. The mechanism of such an induction essentially depends on activation of NMDA type of inotropic glutamate receptors.  相似文献   

9.
Pharmacologically distinct glutamate receptors on cerebellar granule cells   总被引:9,自引:0,他引:9  
J Drejer  T Honoré  E Meier  A Schousboe 《Life sciences》1986,38(23):2077-2085
Cultured cerebellar granule cells were found to exhibit calcium-dependent release of 3H-D-aspartate when stimulated with excitatory amino acids. L-glutamate and L-aspartate were found to be potent stimulators of 3H-D-aspartate release, D-aspartate was weaker and only minor effects were seen with D-glutamate, quisqualate, kainate, N-methyl-D-aspartate (NMDA) and L-alpha-aminoadipate (L-alpha AA). It was also found that only L-glutamate and L-aspartate showed high affinity for the 3H-L-glutamate binding sites on granule cell membranes. Stimulation by L-glutamate of 3H-D-aspartate release could be blocked by various excitatory amino acid antagonists. From the relative potencies of agonists and antagonists on D-aspartate release it is suggested that cerebellar granule cells express functionally active glutamate receptors with pharmacological characteristics different from all known excitatory amino acid receptors.  相似文献   

10.
The effects of ionophoretically applied N-methyl-DL-aspartate (NMDA) and aspartate on identified pyramidal neurons in rat piriform cortex were examined in isolated, submerged, and perfused brain slices. NMDA was more potent than aspartate in eliciting neuronal discharge. Perfusion of the acidic amino acid antagonists, DL-2-amino-5-phosphonovalerate (APV), 10(-6) or 10(-5) M, DL-2-amino-7-phosphonoheptanoate (APH), 10(-5) M, and gamma-D-glutamylglycine (gamma DGG), 10(-5) M, selectively blocked the response to NMDA without effect on the response to aspartate. At higher concentrations which blocked responses to both NMDA and aspartate, gamma DGG blocked kainate responses and depressed glutamate and quisqualate responses. These results suggest that in piriform neurons NMDA and aspartate act at distinct receptor sites, not a common receptor site, and that both of these sites are distinct from those that mediate responses to glutamate, quisqualate, and kainate.  相似文献   

11.
Glutamate (10-100 microM) reversibly depolarizes guinea-pig cerebral cortical synaptosomes. This does not appear to be because of a conventional autoreceptor. Neither kainate at 1 mM, 100 microM N-methyl-D-aspartate (NMDA), 100 microM L-2-amino-4-phosphonobutanoate (APB), nor 100 microM quisqualate affects the Ca2+-dependent release of glutamate from suboptimally depolarized synaptosomes. However, kainate, quisqualate, and the quisqualate agonists beta-N-oxalylamino-L-alanine and alpha-amino-3-hydroxy-5-methylisoxazole propionate cause a slow Ca2+-independent release of glutamate from polarized synaptosomes. However, unlike kainate, quisqualate does not inhibit the acidic amino acid carrier. APB, NMDA, and the NMDA receptor-mediated neurotoxin beta-N-methylamino-L-alanine do not influence Ca2+-independent release at 100 microM. The depolarization of the plasma membrane by glutamate can be mimicked by D-aspartate, can be blocked by the transport inhibitor dihydrokainate, and is accompanied by the net uptake of acidic amino acids. L-Glutamate or D-aspartate at 100 microM increases the cytoplasmic free Ca2+ concentration. D-aspartate at 100 microM causes a Ca2+-dependent release of endogenous glutamate, superimposed on the Ca2+-independent heteroexchange with glutamate through the acidic amino acid carrier. The results suggest that the glutamatergic subpopulation of synaptosomes can be depolarized by exogenous glutamate.  相似文献   

12.
Based on radioligand binding and electrophysiological studies, quinoxalinediones such as 6,7-dinitroquinoxaline-2,3-dione (DNQX) have been shown to be potent competitive antagonists at the quisqualate and kainate subtypes of the glutamate receptor. In this report we have examined the effects of DNQX on excitatory amino acid neurotoxicity and evoked neurotransmitter release. DNQX was found to be a potent neuroprotective agent against glutamate and N-methyl-D-aspartate (NMDA) neurotoxicity. The data suggest that this neuroprotective activity of DNQX is due to its antagonism of the coagonist activity of glycine at the NMDA receptor-channel complex. The specificity of DNQX for the glycine site associated with the NMDA receptor-channel complex was confirmed in radioligand binding and neurotransmitter release studies. DNQX also prevented kainate neurotoxicity and kainate-evoked neurotransmitter release, presumably by direct competition for the kainate receptor. DNQX, however, did not prevent quisqualate neurotoxicity, suggesting that a novel quisqualate-preferring receptor insensitive to DNQX may mediate quisqualate toxicity.  相似文献   

13.
L-Glutamate, N-methyl-D-aspartic acid (NMDA), quisqualate, and kainate were found to increase endogenous somatostatin release from primary cultures of rat cortical neurons in a dose-dependent manner. The rank order of potency calculated from the dose-response curves was quisqualate greater than glutamate = NMDA greater than kainate, with EC50 values of 0.4, 20, and 40 microM, respectively. Alanine, glutamine, and glycine did not modify the release of somatostatin. The stimulation of somatostatin release elicited by L-glutamate was Ca2+ dependent, was decreased by Mg2+, and was blocked by DL-amino-5-phosphonovaleric acid (APV) and thienylphencyclidine (TCP), two specific antagonists of NMDA receptors. The NMDA stimulatory effect was strongly inhibited by APV in a competitive manner (IC50 = 50 microM) and by TCP in a noncompetitive manner (IC50 = 90 nM). The release of somatostatin induced by the excitatory amino acid agonists was not blocked by tetrodotoxin (1 microM), a result suggesting that tetrodotoxin-sensitive, sodium-dependent action potentials are not involved in the effect. Somatostatin release in response to NMDA was potentiated by glycine, but the inhibitory strychnine-sensitive glycine receptor did not appear to be involved. Our data suggest that glutamate exerts its stimulatory action on somatostatin release essentially through an NMDA receptor subtype.  相似文献   

14.
Using cerebellar, neuron-enriched primary cultures, we have studied the glutamate receptor subtypes coupled to neurotransmitter amino acid release. Acute exposure of the cultures to micromolar concentrations of kainate and quisqualate stimulated D-[3H]aspartate release, whereas N-methyl-D-aspartate, as well as dihydrokainic acid, were ineffective. The effect of kainic acid was concentration dependent in the concentration range of 20-100 microM. Quisqualic acid was effective at lower concentrations, with maximal releasing activity at about 50 microM. Kainate and dihydrokainate (20-100 microM) inhibited the initial rate of D-[3H]aspartate uptake into cultured granule cells, whereas quisqualate and N-methyl-DL-aspartate were ineffective. D-[3H]Aspartate uptake into confluent cerebellar astrocyte cultures was not affected by kainic acid. The stimulatory effect of kainic acid on D-[3H]aspartate release was Na+ independent, and partly Ca2+ dependent; the effect of quisqualate was Na+ and Ca2+ independent. Kynurenic acid (50-200 microM) and, to a lesser extent, 2,3-cis-piperidine dicarboxylic acid (100-200 microM) antagonized the stimulatory effect of kainate but not that of quisqualate. Kainic and quisqualic acid (20-100 microM) also stimulated gamma-[3H]-aminobutyric acid release from cerebellar cultures, and kynurenic acid antagonized the effect of kainate but not that of quisqualate. In conclusion, kainic acid and quisqualic acid appear to activate two different excitatory amino acid receptor subtypes, both coupled to neurotransmitter amino acid release. Moreover, kainate inhibits D-[3H]aspartate neuronal uptake by interfering with the acidic amino acid high-affinity transport system.  相似文献   

15.
The effects of excitatory amino acids and some analogues on the release of GABA and ACh from amacrine cells were studied. The release of endogenous GABA from the isolated rat retina was measured by HPLC. When animals were pretreated with γ-vinyl-GABA (GVG), glutamate evoked a large efflux of GABA but kainate, quisqualate and (NMDA) were relatively ineffective. The glutamate evoked release of GABA was calcium dependent and was blocked by the antagonist, piperidine-dicarboxylic acid (PDA) indicating that activation of excitatory amino acid receptors was involved in the response. The release of [3H]ACh from the rabbit retina was strikingly increased by homocysteate and this effect was blocked by NMDA. Since NMDA also blocked the light evoked release of [3H]ACh but not the effects of exogenous glutamate or aspartate, it is possible that homocysteate may be a bipolar cell transmitter released onto cholinergic amacrine cells.  相似文献   

16.
Pharmacological antagonists of excitant amino acid action   总被引:4,自引:0,他引:4  
R H Evans  J C Watkins 《Life sciences》1981,28(12):1303-1308
Pharmacological receptors for excitant amino acids have been classified into three major types found within the vertebrate central nervous system (CNS). The three types of receptor are exemplified by the action of the selective agonists N-methyl-D-aspartate (NMDA), kainate and quisqualate. Several compounds have been discovered which are selective antagonists of NMDA-evoked excitations, the most potent to date being 2-amino-5-phosphonovalerate (APV). Depression of synaptic excitation by NMDA receptor antagonists indicates a physiological role of these receptors in various regions of the CNS.Potent and selective antagonists for kainate or quisqualate receptors have yet to be developed. However, glutamate diethyl ester (GDEE) and γ-D-glutamylglycine (DGG), applied microelectrophoretically, selectively depress quisqualate and kainate-evoked responses, respectively. 2-Amino-4-phosphonobutyrate (APB) and cis-2, 3-piperidine dicarboxylate (PDA) are relatively non-selective antagonists of the three types of excitant receptor. Depression of APV-resistant spinal transmission by PDA and synaptically localized kainate binding in the hippocampus suggest that kainate and/or quisqualate receptors are also involved in excitatory transmission.  相似文献   

17.
Earlier studies have suggested that glutamate may play an important role in the transition between the mitotic (vegetative) and meiotic (sporulative) stages of the life cycle in the yeast Saccharomyces cerevisiae. Glutamate is also a major excitatory neurotransmitter in the vertebrate brain, and its actions are mediated by the excitatory amino acid (EAA) family of receptors, the three best-characterized of which are the N-methyl-D-aspartate (NMDA), quisqualate (Q), and kainate (K) receptors. As an initial test of the possibility that glutamate action in S. cerevisiae might be mediated by an EAA-like receptor mechanism, the effects of ligands that define the functional domains of the vertebrate NMDA receptor have been examined. The responses of S. cerevisiae cells to ligands that act at four distinct sites on the NMDA receptor provide the first evidence for an NMDA-like receptor-mediated system involved in the control of yeast sporulation.  相似文献   

18.
Activation of kainate receptors causes Co2+ influx into neurons, type-2 astrocytes, and O-2A progenitor cells. Agonist-activated Co2+ uptake can be performed using cultured cells or fresh tissue slices. Based on the pattern of response to kainate, glutamate, and quisqualate, three functionally different kainate-activated ion channels (K1, K2, and K3) can be discriminated. Co2+ uptake through the K1 receptor was only activated by kainate. Both kainate and glutamate activated Co2+ uptake through the K2 receptor. Co2+ uptake through the K3 receptor was activated by all three ligands: kainate, glutamate, and quisqualate. Co2+ uptake occurred through a nonselective cation entry pathway permeable to Co2+, Ca2+, and Mn2+. The agonist-dependent activation of divalent cation influx through different kainate receptors could be correlated with expression of certain kainate receptor subunit combinations. These results are indicative of kainate receptors that may contribute to excitatory amino acid-mediated neurotoxicity.  相似文献   

19.
At least two different types of excitatory amino acid receptors have been identified in the mammalian and amphibian central nervous systems. One type ('NMDA receptors') appears to be important in amino acid-mediated synaptic excitation, NMDA being the most potent and specific exogenous agonist for this type of receptor. Many antagonists have selective blocking actions at these NMDA receptors, and such substances are also selective antagonists of synaptic excitation in the vertebrate spinal cord. It is proposed that these receptors are transmitter receptors activated by an excitatory amino acid. In addition, extrasynaptic receptors, activated by domoate, kainate, quisqualate and L-glutamate, but not by NMDA, and only weakly by L-aspartate, have been identified on dorsal root fibres of the immature rat.  相似文献   

20.
Following exocytosis at excitatory synapses in the brain, glutamate binds to several subtypes of postsynaptic receptors. The degree of occupancy of AMPA and NMDA receptors at hippocampal synapses is, however, not known. One approach to estimate receptor occupancy is to examine quantal amplitude fluctuations of postsynaptic signals in hippocampal neurons studied in vitro. The results of such experiments suggest that NMDA receptors at CA1 synapses are activated not only by glutamate released from the immediately apposed presynaptic terminals, but also by glutamate spillover from neighbouring terminals. Numerical simulations point to the extracellular diffusion coefficient as a critical parameter that determines the extent of activation of receptors positioned at different distances from the release site. We have shown that raising the viscosity of the extracellular medium can modulate the diffusion coefficient, providing an experimental tool to investigate the role of diffusion in activation of synaptic and extrasynaptic receptors. Whether intersynaptic cross-talk mediated by NMDA receptors occurs in vivo remains to be determined. The theoretical and experimental approaches described here also promise to shed light on the roles of metabotropic and kainate receptors, which often occur in an extrasynaptic distribution, and are therefore positioned to sense glutamate escaping from the synaptic cleft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号