首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 646 毫秒
1.
A precursor to 10Sa RNA accumulates in an rne mutant. However, the present studies indicate that RNase III is the enzyme that processes this RNA. Cell extracts prepared from an rne mutant failed to cleave p10Sa RNA, whereas E coli wild type, rne and rnp cell extracts processed p10Sa RNA under specific assay conditions that require the presence of Mn2+ but not under the customary conditions used for assaying RNase III. That the p10Sa cleaving activity is solely RNase III was confirmed by comparing the increase in p10Sa and poly(A).poly(U) cleaving activities in a strain harboring a plasmid carrying an RNase III gene as compared to a normal E coli strain. It is of interest that these 2 substrates are cleaved by RNase III efficiently, but under 2 different assay conditions. In all strains tested, with normal or elevated levels of RNase III, RNase III fractionates predominantly with the membrane. Further characterization of the maturation of 10Sa RNA revealed that the processing of 10Sa RNA is a 2 step reaction involving 2 separate activities, both sensitive to heat and proteinase K treatment. The first step is catalyzed by RNase III, and results in the formation of a molecule, p10Sa', which is larger than the mature 10Sa RNA. The second activity catalyzes the conversion of p10S' to 10Sa RNA, and this step does not require a divalent cation. The second activity is not any of the known processing endoribonucleases, RNase III, E or P, but could be a new enzyme having no obligate requirement for a divalent cation.  相似文献   

2.
1. A precursor to small stable RNA, 10Sa RNA, accumulates in large amounts in a temperature sensitive RNase E mutant at non-permissive temperatures, and somewhat in an rnc (RNase III-) mutant, but not in an RNase P- mutant (rnp) or wild type E. coli cells. 2. Since p10Sa RNA was not processed by purified RNase E and III in customary assay conditions, we purified p10Sa RNA processing activity about 700-fold from wild type E. coli cells. 3. Processing of p10Sa RNA by this enzyme shows an absolute requirement for a divalent cation with a strong preference for Mn2+ over Mg2+. Other divalent cations could not replace Mn2+. 4. Monovalent cations (NH+4, Na+, K+) at a concentration of 20 mM stimulated the processing of p10Sa RNA and a temperature of 37 degrees C and pH range of 6.8-8.2 were found to be optimal. 5. The enzyme retained half of its p10Sa RNA processing activity after 30 min incubation at 50 degrees C. 6. Further characterization of this activity indicated that it is RNase III. 7. To further confirm that the p10Sa RNA processing activity is RNase III, we overexpressed the RNase III gene in an E. coli cells that lacks RNase III activity (rnc mutant) and RNase III was purified using one affinity column, agarose.poly(I).poly(C). 8. This RNase III preparation processed p10Sa RNA in a similar way as observed using the p10Sa RNA processing activity purified from wild type E. coli cells, confirming that the first step of p10Sa RNA processing is carried out by RNase III.  相似文献   

3.
An NADH cytochrome c reductase has been identified in plasma membrane fractions from neutrophils in addition to the superoxide producing NADPH oxidase which has been extensively studied by other investigators. Activation of neutrophils resulted in increased enzyme activities but to different degrees; the NADH cytochrome c reductase increased 2 fold in specific activity and the NADPH oxidase 30 fold. Treatment of the plasma membrane fraction with sonication and differential centrifugation yielded a particulate fraction (R2) with a 2 fold increase in specific activities of both enzymes and concentrations of cytochrome b and FAD. The cytochrome b in the preparation was not reduced under anaerobic conditions by either NADH or NADPH. Treatment of preparations of R2 with deoxycholate or potassium thiocyanate separated the two enzymes yielding particulate preparations with only NADPH oxidase or NADH cytochrome c reductase activity, respectively.  相似文献   

4.
Cells overexpressing the RNA-processing enzymes RNase III, RNase E and RNase P were fractionated into membrane and cytoplasm. The RNA-processing enzymes were associated with the membrane fraction. The membrane was further separated to inner and outer membrane and the three RNA-processing enzymes were found in the inner membrane fraction. By assaying for these enzymatic activities we showed that even in a normal wild-type strain of Escherichia coli these enzymes fractionate primarily with the membrane. The RNA part of RNase P is found in the cytosolic fraction of cells overexpressing this RNA, while the overexpressed RNase P protein sediments with the membrane fraction; this suggests that the RNase P protein anchors the RNA catalytic moiety of the enzyme to a larger entity. The implications of these findings for the cellular organization of the RNA-processing enzymes in the cell are discussed.  相似文献   

5.
Mycoplasmalike organisms (MLOs), purified from aster yellows-infected plants were osmotically lysed, and the membranes were separated from the cytoplasmic fraction through differential centrifugation. Electron microscopic examinations of sections of the purified MLOs and the isolated membranes showed pleomorphic bodies and unit membranous empty vesicles, respectively. Cell fractions were tested for NADH oxidase, NADPH oxidase, ATPase, RNase, DNase, and p-nitrophenyl phosphatase activity. NADH oxidase and ATPase were confined to the membrane fraction and NADPH oxidase to the cytoplasmic fraction of the MLOs. para-Nitrophenyl phosphatase, RNase, and DNase activities were detected in both membrane and cytoplasmic fractions, but p-nitrophenyl phosphatase and RNase appeared to be associated with membranes and DNase with the cytoplasmic fraction. Glucose-6-phosphate dehydrogenase was found in the cytoplasmic fraction of the MLO cells. Our findings on the distribution of enzymes in MLO cells and cell fractions are the first basic documentation on nonhelical, nonculturable microbes parasitic to plants.  相似文献   

6.
Analytical fractionation of cultured hepatoma cells (HTC cells)   总被引:6,自引:0,他引:6  
Homogenates of HTC cells have been fractionated by differential centrifugation (in four particulate fractions: N, M, L, P, and a supernatant S) or isopycnic banding in linear sucrose gradients. On this basis, the following subcellular organelles may be characterized: (i) Mitochondria, detected by cytochrome oxidase and succinodehydrogenase, are collected in the M and L fractions, and equilibrate, as a narrow band, at a median buoyant density of 1.18 g/cm3. (ii) Lysosomes, detected by the latent hydrolases beta-glycerophosphatase and N-acetyl-beta-glucosaminidase, are largely sedimented in the M and L fractions, and display a broad density distribution pattern with a median value of 1.17 g/cm3. This density is decreased or increased after cultivation of the cells in presence of Triton WR-1339 or Dextran 500, respectively. The behavior of cathepsin D is somewhat at variance with that of the two other hydrolases. (iii) Plasma membrane is tentatively detected by alkaline phosphodiesterase I. Largely recovered in the P fraction, this enzyme equilibrates at a median density close to that of the lysosomal hydrolases; the bulk of cholesterol and about half of the leucyl-2-naphthylamidase are closely associated with alkaline phosphodiesterase I; HTC cells do not contain typical 5'-nucleotidase. (iv) Catalase-bearing particles, of high buoyant density (1.22 g/cm3) are present, but 30-40% of the catalase is also found readily soluble. NADPH- and NADH: cytochrome c reductase, and RNA show more complex distributions. It is suggested that the former enzyme is associated with the endoplasmic reticulum; as in liver, NADH reductase activity is shared between the endoplasmic reticulum and the mitochondria; half of the RNA is associated with free ribosomes of polysomes. True glucose-6-phosphatase could not be detected.  相似文献   

7.
F Braun  J Le Derout    P Régnier 《The EMBO journal》1998,17(16):4790-4797
The hypothesis generally proposed to explain the stabilizing effect of translation on many bacterial mRNAs is that ribosomes mask endoribonuclease sites which control the mRNA decay rate. We present the first demonstration that ribosomes interfere with a particular RNase E processing event responsible for mRNA decay. These experiments used an rpsO mRNA deleted of the translational operator where ribosomal protein S15 autoregulates its synthesis. We demonstrate that ribosomes inhibit the RNase E cleavage, 10 nucleotides downstream of the rpsO coding sequence, responsible for triggering the exonucleolytic decay of the message mediated by polynucleotide phosphorylase. Early termination codons and insertions which increase the length of ribosome-free mRNA between the UAA termination codon and this RNase E site destabilize the translated mRNA and facilitate RNase E cleavage, suggesting that ribosomes sterically inhibit RNase E access to the processing site. Accordingly, a mutation which reduces the distance between these two sites stabilizes the mRNA. Moreover, an experiment showing that a 10 nucleotide insertion which destabilizes the untranslated mRNA does not affect mRNA stability when it is inserted in the coding sequence of a translated mRNA demonstrates that ribosomes can mask an RNA feature, 10-20 nucleotides upstream of the processing site, which contributes to the RNase E cleavage efficiency.  相似文献   

8.
9.
A possible complex containing RNA processing enzymes   总被引:5,自引:0,他引:5  
The three enzymes, RNAase III, RNAase E and RNAase P participate in the processing of RNA precursors in Escherichia coli. In extracts which contain a mutated RNAase III or RNAase E under certain conditions RNAase P activity is not expressed while in the wild-type extract it is. Upon high-speed centrifugation of a cell extract from a strain of E.,coli, which contains all these three enzymes, the majority of RNAase P, RNAase III and RNAase E activities sediment as particles heavier than their known sizes. In a sucrose density gradient of the cell extract, part of RNAase E and RNAase P activities co-sediment while most of the RNAase III activity is found toward the top of the gradient. This behavior is distinct from other ribonucleases such as RNAase II and RNAase H, which do not sediment as complexes. This complex does not seem to be caused merely by the association of the enzymes with ribosomes.  相似文献   

10.
The subcellular localization of the omega-hydroxylase of Saccharomycopsis lipolytica was assessed by the analytical fractionation technique, originally described by de Duve C., Pressman, B.C., Gianetto, R., Wattiaux, R. and Appelmans, F., and hitherto little, if at all, applied to yeasts. Protoplasts were separated in six fractions by differential centrifugation. Some of these fractions were further fractionated by density gradient centrifugation. The distribution of omega-hydroxylase and 15 other constituents chosen as possible markers of its subcellular entities. (1) Mitochondria were characterized by particulate malate dehydrogenase, particulate Antimycin A-insensitive NADH-cytochrome c reductase, oligomycin-sensitive and K+-stimulated ATPase pH 9. (2) Most if not all of the catalase and urate oxidase is peroxisomal. (3) Free ribosomes account for most RNA. (4) Nucleoside diphosphatase is for the first time reported in a yeast and appears to belong to an homogeneous population of small membranes. (5) The soluble compartment contains magnesium pyrophosphatase, alkaline, 5'-nucleotidase and part of the NADH-cytochrome c reductase. Latent arylesterase and ATPase pH 7 have an unspecific distribution. Alkaline phosphodiesterase I has not been detected.  相似文献   

11.
Addition of nutrients to starved mouse S-180 cells leads to rapid conversion of ribosomal monomers to polysomes. During this process, a portion of the ribosomes originally found in the 17,000 g (10 min centrifugation) supernatant of cell lysates becomes firmly attached to structures sedimenting at 500 g (5 min centrifugation). Electron microscopy of sections of the intact cells showed the change from randomly distributed ribosomal particles to clusters. Association with membranes also became evident. The material sedimenting at 500 g comprised nuclei enclosed in an extensive endoplasmic reticulum (ER) network. This fraction prepared from recovering cells showed numerous ribosome clusters associated with the ER network. The appearance of many of these clusters indicated that the ribosomal particles were not directly bound to the membranes. RNase treatment released about 40% of the attached ribosomes as monomers, and ethylenediaminetetraacetic acid released 60% as subunits. It is suggested that during polysome formation a portion of the ribosomes becomes attached to the membranes through the intermediary of messenger RNA.  相似文献   

12.
A factor isolated from rabbit reticulocyte white ghosts by Triton X-100 treatment blocks protein synthesis at the elongation-termination stage. Factor-treated ribosomes were found to have an identical buoyant density to that of control ribosomes. When incubated with either reticulocyte ribosomes or ribosomal RNA, the factor products specific cuts in the 28-S ribosomal RNA compenent without damaging the 18-S RNA. Incubations of pancreatic or T1 RNase, with ribosomal RNA, at similar protein-synthesis inhibitory concentrations effected a complete breakdown to oligo and mononucleotides. When challenged with isolated 28-S or 18-S reticulocyte ribosomal RNA, the highly purified factor only attacked the 28-S RNA species. There was no accumulation of nucleotides or oligonucleotides and we concluded that the membrane factor causes inhibition of protein synthesis by having a specific endonucleolytic cleavage activity.  相似文献   

13.
SYNOPSIS. Mitochondrial and supernatant fractions were isolated from Crithidia fasciculata by grinding with neutral alumina and differential centrifugation. Supernatant fractions contained at least 2 NAD-linked enzymes: an α-glycerophosphate dehydrogenase and a malate dehydrogenase. The properties of these enzymes were investigated polarographically with phenazine ethosulfate acting as electron acceptor. Agaricic acid, cinnamic acid and p-NO2-cinnamic acid were specific inhibitors of the α-glycerophosphate dehydrogenase. Succinate, malate, DL-α-glycerophosphate and NADH stimulated respiration of mitochondrial preparations; O2 uptake was greatest with succinate. KCN and antimycin A inhibited succinate respiration more than α-glycerophosphate respiration. Amytal did not affect succinate, α-glycerophosphate or NADH oxidation. The trypanocide suramin inhibited mitochondrial respiration at least 77% with each substrate. The relevance of these results to other members of the Trypanosomatidae is discussed.  相似文献   

14.
15.
(1) The content of DNA, RNA and of proteins of Brachionus plicatilis was estimated and the distribution of RNA and of proteins of different homogenate fractions characterised. (2) Ribosomes were isolated from Brachionus plicatilis homogenates and were characterised by gradient centrifugation. (3) Unlike the RNA content, the yield of ribosomes from different homogenate fractions is strongly dependent on the concentration of Mg2+-ions in the buffers. Likewise resuspension of ribosomes is more effective in Mg2+- (or Ca2+-) free buffers. (4) Dissociation of ribosomes was brought about by centrifugation of ribosomes in gradients containing less than 4 mM Mg2+. In this case, beside the peaks of subunits, a peak in the region of 80 S remained which vanished only under conditions destroying ribosomal material altogether. (5) Proteins were isolated from ribosomal subunits and from undissociated ribosomes and were characterised by two-dimensional gel electrophoresis techniques. Patterns of 51 spots were regularly obtained from large subunits and patterns of 41 spots from small subunits. The undissociated ribosomes showed 83 spots, most of which could be attributed to the large or the small subunit. The ribosomal proteins have molecular masses of between 11000 and 56000 Da, while the molecular mass of the total protein content of Brachionus ribosomes was estimated to be 1.8 ±0.5) ×106 Da.  相似文献   

16.
17.
The Kinetics of the Synthesis of Ribosomal RNA in E. coli   总被引:3,自引:0,他引:3       下载免费PDF全文
The kinetics of the synthesis of ribosomal RNA in E. coli has been studied using C14-uracil as tracer. Two fractions of RNA having sedimentation constants between 4 and 8S have kinetic behavior consistent with roles of precursors. The first consists of a very small proportion of the RNA found in the 100,000 g supernatant after ribosomes have been removed. It has been separated from the soluble RNA present in much larger quantities by chromatography on DEAE-cellulose columns. The size and magnitude of flow through this fraction are consistent with it being precursor to a large part of the ribosomal RNA.

A fraction of ribosomal RNA of similar size is also found in the ribosomes. This fraction is 5 to 10 per cent of the total ribosomal RNA and a much higher proportion of the RNA of the 20S and 30S ribosomes present in the cell extract. The rate of incorporation of label into this fraction and into the main fractions of ribosomal RNA of 18S and 28S suggests that the small molecules are the precursors of the large molecules. Measurements of the rate of labeling of the 20, 30, and 50S ribosomes made at corresponding times indicate that ribosome synthesis occurs by concurrent conversion of small to large molecules of RNA and small to large ribosomes.

  相似文献   

18.
RNA metabolism is a critical but frequently overlooked control element affecting virtually every cellular process in bacteria. RNA processing and degradation is mediated by a suite of ribonucleases having distinct cleavage and substrate specificity. Here, we probe the role of two ribonucleases (RNase III and RNase J) in the emerging model system Streptomyces venezuelae. We show that each enzyme makes a unique contribution to the growth and development of S. venezuelae and further affects the secondary metabolism and antibiotic production of this bacterium. We demonstrate a connection between the action of these ribonucleases and translation, with both enzymes being required for the formation of functional ribosomes. RNase III mutants in particular fail to properly process 23S rRNA, form fewer 70S ribosomes, and show reduced translational processivity. The loss of either RNase III or RNase J additionally led to the appearance of a new ribosomal species (the 100S ribosome dimer) during exponential growth and dramatically sensitized these mutants to a range of antibiotics.  相似文献   

19.
Youmans, Anne S. (Northwestern University Medical School, Chicago, Ill.), and Guy P. Youmans. Preparation of highly immunogenic ribosomal fractions of Mycobacterium tuberculosis by use of sodium dodecyl sulfate. J. Bacteriol. 91:2139-2145. 1966.-Ribosomal fractions of Mycobacterium tuberculosis, strain H37Ra, were prepared by treatment of the intracellular particulate fraction with 0.25 or 0.5% sodium dodecylsulfate (SDS) followed by centrifugation at 144,700 x g for 3 hr. This procedure has greatly simplified the preparation of ribosomal fractions and has given fractions composed of approximately 50% ribonucleic acid (RNA) and 15 to 20% protein. When incorporated into Freund's incomplete adjuvant and injected intraperitoneally into CF-1 mice, the SDS ribosomal fractions were more immunogenic than the particulate fractions from which they were prepared. They were as much as 100 times more immunogenic than ribosomal fractions prepared by differential centrifugation, 1 mug (dry weight) per mouse being sufficient for the induction of some immunity. However, none of these ribosomal preparations, in comparable doses, was as immunogenic as the living cells from which they were prepared. It was also shown that the addition of 10(-4)m MgCl(2) to the final diluent increased immunogenic activity, whereas larger concentrations (10(-3)m) reduced immunogenic activity. Preparation of the ribosomal fraction from ruptured cells in one continuous process during the course of 1 day increased the activity. Two-week-old H37Ra cells contained more RNA and were more immunogenic than the older cultures which have been used in the past.  相似文献   

20.
RNase activity from Chlorella was partially purified. Two RNase activities were demonstrated, one soluble and the other ribosomal. The effects on ribonuclease activity of variations in pH and temperature, and of Mg2+, Na+, and mononucleotides were examined. The RNase activities (phosphodiesterases EC 3.1.4.23) were both endonucleolytic, releasing oligonucleotides, and cyclic nucleotide intermediates, but exhibited different specificities in releasing mononucleotides from RNA. The ribosomal activity released 3′-GMP, and after prolonged incubation 3′-UMP, but the soluble activity released 3′-GMP, 3′-AMP and 3′-UMP. Neither ofthe RNase preparations hydrolysed DNA, nor released 5′-nucleotides from RNA. Increased ribosomal RNase activity was related to dissociation of ribosomes, and latency of ribosomal RNase activity was demonstrated. The possible in vivo distribution of RNases is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号