首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Platelet-activating factor (PAF) is a highly active mediator which has been implicated in allergic inflammation and bronchial asthma, possibly by interacting with eosinophils. We have examined the effect of PAF on activation of purified human eosinophils as measured by degranulation (eosinophil peroxidase, eosinophil cationic protein, arylsulfatase B, beta-glucuronidase, and alkaline phosphatase) and oxidative metabolism (superoxide anion production). PAF induced enzyme release at concentrations ranging from 1 pM to 10 microM in a rapid (t1/2 5 to 8 min), Ca2+-dependent and noncytotoxic manner from both the specific and small granules, whereas its biologic precursor and metabolite, lyso-PAF, had no effect. For all enzymes, maximal enzyme release occurred at 100 nM PAF with a mean ED50 value of 1.47 +/- 0.4 nM. At this concentration the mean percentage of total enzyme release by PAF from specific granules was 20.3 +/- 1.6% (17.9% for eosinophil peroxidase, 20.6% for beta-glucuronidase, 22.4% for alkaline phosphatase) and 28.8 +/- 2.2% from small granules (arylsulfatase B). Calcium ionophore A23187, PMA, and opsonized zymosan also induced eosinophil degranulation but their peak effect after 10-min incubation with maximal release 14.7%, 12.9%, or 14.1%, respectively, was lower when compared with PAF. Incubation of eosinophils with the PAF-antagonist WEB 2086 led to a parallel shift of the dose-response curve to the right, indicating a competitive antagonism. PAF also caused generation of superoxide anions by human eosinophils but this occurred at higher concentrations of PAF (1 microM to 30 microM) with an ED50 of 8.4 +/- 0.9 microM. Again, this effect was competitively inhibited by WEB 2086. These studies demonstrate that PAF activates human eosinophils to release granule constituents and generate superoxide anions. Since both PAF and eosinophil products are associated with pathogenesis of bronchial asthma our findings may be of particular pathophysiologic relevance.  相似文献   

2.
Like the PMN, human peripheral blood monocytes were capable of aggregating in response to FMLP and PAF. Monocyte aggregation was dependent on glycolysis and the presence of divalent cations. Unlike the PMN, monocyte aggregation in response to FMLP was not accompanied by degranulation, nor was it potentiated by cytochalasin B. Furthermore, cytochalasin B and its cogenitor, dihydrocytochalasin B, inhibited aggregation in response to PAF. PAF and FMLP appeared to react with the monocyte at separate receptors because sequential challenge of the monocyte with the same agents failed to elicit further aggregation, whereas rechallenge with the alternative agent induced further aggregation. Because the monocyte will aggregate to chemotactic agents in vitro, it is likely that the cell will be affected by these agents in vivo, which could lead to leukoembolization of circulating monocytes.  相似文献   

3.
The capacity of IL-1-beta, TNF, and IFN-gamma to stimulate platelet-activating factor (PAF) synthesis by human monocytes is examined in our report. All three cytokines induced PAF synthesis in a novel biphasic pattern with peaks of PAF synthesis 1 to 2 and 6 to 8 h after stimulation of the monocytes. In contrast, calcium ionophore A23187 elicited a single peak of early PAF synthesis. PAF in the early peak was largely retained intracellularly whereas PAF in the late peak was largely released into culture fluids. Combinations of cytokines were subadditive or antagonistic in inducing PAF synthesis. Cycloheximide inhibited the late peak of PAF synthesis indicating that protein synthesis is required for synthesis of the phospholipid PAF. Specific antibodies to TNF or IL-1-beta inhibited the late peak of PAF synthesis induced by IFN-gamma indicating that late PAF synthesis is dependent on cytokine synthesis. The quantities of PAF produced by cytokine-activated monocytes are sufficient to activate human monocytes. Thus, these studies suggest that PAF may mediate in part monocyte activation by cytokines.  相似文献   

4.
Herein we demonstrate that IFN-alpha, IFN-gamma, and IL-2 can induce human peripheral blood monocyte-mediated lysis of tumor cells that are resistant to both the direct effects of TNF and to monocytes activated by TNF. Monocytes activated by TNF kill only TNF-sensitive tumor targets, whereas those activated by IFN and IL-2 can lyse both TNF-sensitive and TNF-resistant tumor targets. Monocyte cytotoxicity against TNF-sensitive lines induced by the IFN, IL-2, or TNF can be completely abrogated by the addition of anti-TNF antibodies. In contrast, anti-TNF antibodies have no effect on IFN- or IL-2-induced monocyte cytotoxicity against TNF resistant targets, confirming non-TNF-mediated lysis induced by lymphokine-activated monocytes. Neither induction of TNF receptors by IFN-gamma nor inhibition of RNA synthesis by actinomycin D increased the susceptibility of TNF-resistant tumor targets to TNF-mediated monocyte cytotoxicity. Thus, non-TNF-mediated modes of monocyte cytotoxicity are induced by IFN and IL-2, but not by TNF, indicating that different cytotoxic mechanisms are responsible for the lysis of TNF-sensitive and TNF-resistant tumor cells. In addition, these findings also suggest that TNF-sensitive lines are susceptible only to TNF-mediated killing and apparently insensitive to non-TNF-mediated monocyte cytotoxicity.  相似文献   

5.
The mechanism of human peripheral blood monocyte-mediated cytotoxicity for tumor cells was investigated, using the A673 human rhabdomyosarcoma and HT-29 human colon adenocarcinoma lines as target cells. A673 cells were shown to be susceptible to the cytotoxic action of purified recombinant human tumor necrosis factor (TNF). A673 cells were also highly sensitive to the cytotoxic action of peripheral blood monocytes. Clones of A673 cells sensitive and resistant to TNF were isolated and characterized for their sensitivity to monocyte killing. A good correlation was found between the sensitivity of these clones to the cytotoxicity of TNF and their susceptibility to killing by monocytes. A TNF-specific neutralizing monoclonal antibody (MAb) reduced monocyte killing of parental A673 cells and of a TNF-sensitive clone of A673 cells. Inhibition of monocyte killing by this MAb was particularly pronounced at a low effector to target cell ratio. HT-29 cells were relatively resistant to the cytotoxic action of recombinant TNF and to monocyte killing. Treatment of HT-29 cells with recombinant human IFN-gamma increased their susceptibility to both TNF cytotoxicity and monocyte killing. In addition, MAb to TNF inhibited monocyte killing in HT-29 cells sensitized by incubation with IFN-gamma. Our data show that TNF is an important mediator of the cytotoxicity of human monocytes for tumor cells and that IFN-gamma can increase monocyte cytotoxicity by sensitizing target cells to the lytic action of TNF.  相似文献   

6.
In the present study we examined whether endothelin-1 stimulation of human monocytes causes release of chemotactic factors. It was found that monocytes released neutrophil- and monocyte-chemotactic activity in a dose- and time-dependent manner in response to ET-1. ET-1 did not show any chemotactic activity by itself. NCA was detected in monocyte supernatants in response to ET-1 (0.01-100 nM) after 1, 4, 8 and 24 h stimulation. MCA was detected only after 24 h stimulation with ET-1 (0.1-100 nM). Preincubation of the monocyte cultures with the lipoxygenase inhibitors nordihydroguaiaretic acid (10(-4) M) or diethylcarbamazine (10(-9) M) completely abolished the appearance of NCA and MCA. NCA was neutralized by > 75% using a polyclonal antibody against human interleuktn-8. The ET-1 induced release of IL-8 was confirmed by IL-8 ELISA. A monoclonal antibody against human monocyte chemotactic protein-1 neutralized MCA by > 80%. It is concluded that ET-1 stimulation of monocytes in vitro causes release of neutrophil- and monocyte-chemotactic activity identified as IL-8 and MCP-I respectively. An intact lipoxygenase pathway is crucial for this effect of ET-1 to occur.  相似文献   

7.
Several tumor target cell lines, prototypically K562 cells, are resistant to lysis by recombinant tumor necrosis factor (TNF alpha) but are killed by monocytes expressing membrane-associated TNF, suggesting that membrane TNF could account for monocyte-mediated cytotoxicity. Formaldehyde-fixed monocytes or extracted monocyte membrane fragments are cytotoxic to K562 target cells. Treatment of monocytes with interferon-gamma (IFN-gamma) increases cytotoxicity by live and fixed cells or by extracted monocyte membranes. Both TNF and TNF receptors are detectable on monocyte membranes by FACS analysis, and the levels of each are modulated by treatment with IFN-gamma. Cytotoxicity can be inhibited by either anti-TNF or anti-TNF receptor antibodies. Incubation of effector cells with exogenous soluble TNF prior to fixation or membrane preparation increases their cytotoxicity. In contrast, incubation of the target cells with exogenous TNF neither increases nor decreases killing by effector cell membrane fragments or intact effector cells. The data suggest that the TNF receptors on the effector cell, but not on the target cell, play a crucial role in TNF-mediated cytotoxicity.  相似文献   

8.
9.
In vitro culture of either human peripheral blood monocytes or murine peritoneal macrophages for 72 hr in the presence of macrophage colony-stimulating factor (M-CSF) dramatically increased their subsequent ability to mediate antibody-dependent cellular cytotoxicity (ADCC). The M-CSF-treated cells were more effective in ADCC at lower effector to target cell ratios and in the presence of lower concentrations of tumor-specific monoclonal antibody than the untreated control cells. Two other hematopoietic cytokines, granulocyte-macrophage colony-stimulating factor and interleukin-3, reported to enhance other macrophage effector functions were ineffective in promoting the development of ADCC by cultured human monocytes. All three hematopoietic growth factors were capable of enhancing the ability of the cultured monocytes to secrete TNF alpha; however, TNF alpha is unlikely to be an important cytotoxic factor in ADCC because neutralizing antibodies against TNF alpha had no affect on ADCC in vitro. Further, much higher concentrations of M-CSF were required to augment monocyte TNF alpha release (20-100 ng/ml) than ADCC capacity (1-10 ng/ml). These results suggest that M-CSF administration might prove effective in increasing the tumoricidal activities of tumor-specific monoclonal antibodies by enhancing the capacity of monocytes and macrophages to mediate ADCC.  相似文献   

10.
12-O-Tetradecanoylphorbol 13-acetate (TPA), phorbol 12,13-diacetate and phorbol 12,13-didecanoate were all potent inducers of thromboplastin activity in human monocytes in vitro, whereas 4 alpha-phorbol 12,13-didecanoate and 4 alpha-phorbol had no such effect. A concomitant increase in titrable apoprotein III antigen was found (apoprotein III is the protein component of thromboplastin). The increase was inhibited by cycloheximide and actinomycin D and partly by alpha-amanitin. The increase of thromboplastin activity was therefore most likely due to synthesis de novo of apoprotein III. The response was approximately halved in the absence of serum or Ca2+. Retinol had a weak inhibitory effect, and retinoic acid was inhibitory only at concentrations that also induced signs of cytotoxicity. TPA caused an initial rise in monocyte cyclic AMP concentration of about 90-120 min duration. No increase in 45Ca2+ influx was induced over 2 h. Good correlation exists between induction of apoprotein III synthesis in monocytes in vitro and mouse skin-tumour promotion in vivo by the various phorbol derivatives. Substances inactive in tumour promotion do not induce the synthesis of apoprotein III. General activating and cytotoxic effects of TPA were monitored by determining release of lysozyme, beta-glucuronidase and lactate dehydrogenase.  相似文献   

11.
12.
WEHI164 cells are susceptible to cytotoxicity by soluble recombinant or monocyte-derived TNF alpha, as well as to cell-mediated cytotoxicity by monocytes or lymphocytes. In contrast, K562 cells are resistant to lysis by soluble recombinant or natural TNF alpha, but are killed by monocyte or lymphocyte effector cells. Cell-mediated cytotoxicity against both target cell lines is enhanced by treatment of monocyte effector cells with recombinant interferon gamma or lymphocyte effector cells with interleukin-2. However, treatment of monocytes with LPS, or of lymphocytes with PHA, although inducing secretion of soluble TNF alpha in the medium, does not increase cell-mediated cytotoxicity. Anti-TNF alpha neutralizing antibodies partially inhibit monocyte- as well as lymphocyte-mediated cytotoxicity against WEHI164 and K562 cells. Formaldehyde-fixed effector cells are cytotoxic to both target cell lines. Cytotoxicity by fixed effector cells can be inhibited by anti-TNF alpha antibodies. The extent of cell-mediated cytotoxicity induced by treatment of effector cells with stimulators prior to fixation corresponds to the expression of TNF on monocyte membranes, but not to the titers of secreted TNF. The data suggest that membrane-associated TNF alpha may be a mechanism of human monocyte- as well as lymphocyte-mediated cytotoxicity, regardless of whether the target cells are sensitive or insensitive to soluble TNF.  相似文献   

13.
Increased plasma- and tissue levels of endothelin-1 (ET-1) during inflammatory diseases, have suggested a role of ET-1 in the pathophysiology of inflammatory reactions. The authors have studied the effect of ET-1 on cytokine release from monocytes and monocyte-derived macrophages. ET-1 increased secretion of TNF-alpha, IL-1beta and IL-6 in a dose- and time-dependent manner. Optimal ET-1 concentration ranged from 0.01 to 1 nM. The maximal response was a 200 to 400% increase in cytokine release. A time-course study revealed that the pattern of cytokines induced by ET-1 was different in monocytes and macrophages, although an early increase in TNF-alpha was observed in both monocyte and macrophage supernatants. In conclusion, ET-1 stimulates monocytes and macrophages to release cytokines thereby demonstrating a potential role for ET-1 in regulation of inflammatory responses.  相似文献   

14.
The coagulation protein thrombin has been shown to stimulate multiple endothelial-cell (EC) functions, including production of platelet-derived growth factor and of platelet-activating factor (PAF), and neutrophil adhesion. We have found that thrombin causes increased binding of monocytic cells (U937 cells and normal human monocytes) to cultured EC of various species. Maximum adhesion of monocytes to pig aortic EC occurred 6 h after thrombin treatment and remained elevated through 24 h. Stimulation of adherence by bovine alpha-thrombin was half-maximal at 15 units/ml, and reached a plateau at 50 units/ml. Catalytically inactive thrombin (phenylmethanesulphonyl fluoride-treated) had no effect on monocyte adhesion to EC. Heparin, but not the endotoxin antagonist polymyxin B, suppressed the stimulation of adhesion by thrombin without altering basal adhesion. Two lines of evidence suggested that protein kinase C (PKC) was involved in the intracellular signalling to increase monocyte adhesion to EC. First the PKC activator phorbol 12-myristate 13-acetate (PMA) stimulated monocytic-cell adhesion to EC at a dose consistent with stimulation of PKC (half-maximal response at 1-3 nM) and with a time course similar to that for thrombin stimulation (maximal by 4 h). Diacylglycerol, a physiological activator of PKC, also stimulated U937-cell adhesion to EC. Secondly, H7, a PKC inhibitor, completely blocked stimulation of monocyte adhesion to EC by thrombin or PMA. The structural analogue of H7, HA1004, which preferentially inhibits cyclic-AMP- and cyclic-GMP-dependent protein kinases, had no effect on stimulated monocyte adhesion. The PKC inhibitor also blocked the stimulation of monocyte adhesion to EC by interleukin-1 and endotoxin, but did not alter the basal level of monocyte binding to unstimulated EC. Thrombin stimulation of monocyte adhesion differed from the reported stimulation of neutrophil adhesion by thrombin in that the latter process reached a maximum in minutes rather than hours. In addition, neither PAF itself nor agents known to stimulate PAF production by EC, such as arachidonate and the Ca2+ ionophore A23187, had any effect on monocyte adhesion. These results demonstrate a PKC-dependent cytokine-like action of the coagulation protein thrombin in modulating monocytic-cell adhesion to EC, a phenomenon of potential importance in many pathological and physiological processes.  相似文献   

15.
The induction of phosphoenolpyruvate carboxykinase (PEPCK) by glucagon was studied in primary rat hepatocyte cultures by determining the time course of the sequential events, increases in the enzyme's mRNA abundance, synthesis rate, amount and activity, and by investigating the antagonistic action of insulin on the induction by glucagon. 1. The mRNA of PEPCK was induced maximally 2-3 h after addition of 10 nM glucagon, as detected by Northern-blot analysis after hybridization with a biotinylated antisense RNA of PEPCK. 2. The synthesis rate of PEPCK increased maximally 2-3 h after application of glucagon as revealed by pansorbin-linked immunoprecipitation of [35S]methionine-labelled PEPCK. 3. The enzyme amount and activity was maximally induced 4 h after glucagon application. 4. The mRNA of PEPCK was half-maximally induced by 0.1 nM and maximally by 1 nM and 10 nM glucagon. The half-maximal induction by 0.1 nM glucagon was antagonized almost totally, and the maximal induction by 1 nM glucagon partially, while the maximal induction by 10 nM glucagon remained unaffected by 10 nM insulin. The results show that in cultured rat hepatocytes physiological concentrations of glucagon stimulated the induction of PEPCK by an increase in mRNA, that the glucagon-dependent increase in mRNA and enzyme-synthesis rate occurred in parallel and preceded the increase of enzyme amount and activity by 1-1.5 h, and that physiological levels of insulin antagonized the induction by glucagon in the physiological concentration range, with glucagon being the dominant hormone.  相似文献   

16.
Summary In view of cellular adoptive immunotherapy we have studied monocyte-mediated cytostasis and cytotoxicity against U 937 cells, a human histiocytic lymphoma cell line. Highly purified human monocytes and monocytederived macrophages were activated with interferon (IFN) or tumour necrosis factor (TNF) to antileukemic immune effector cells. Antileukemic activity of human monocytes was dependent on monocyte differentiation into macrophages and on a dose- and time-dependent activation with IFN or TNF. Maximum cytostasis of 97.0±0.7% (mean ± SEM) (conventional [3H]dT uptake assay) and 81.9±5.3% cytotoxicity (modified MTT assay) of U 937 cells was obtained by monocytes activated with 100 U/ml IFN for at least 24 h at an effector-to-target-cell ratio of 10. U 937 cells premodified with IFN showed an increase in susceptibility to monocyte-mediated cytotoxicity. U 937 cells premodified with TNF were almost resistant to monocyte-mediated cytotoxicity while activated monocytes maintained their cytotoxic potential. These data show that IFN and TNF are potent activators of monocyte-mediated cytotoxicity. Furthermore, IFN and TNF might be involved in the regulation of the susceptibility of leukemic cells to lysis by interactions with monocytes or macrophages.  相似文献   

17.
The purpose of this study was to determine the role, if any, of Leukotriene B4 (LTB4) in Platelet Activating Factor (PAF)-induced aggregation of rat polymorphonuclear leucocytes (PMNs). Exposure of rat PMNs to 10(-7) M PAF resulted in the release of 4.5 +/- 0.7 ng/10(7) cells of LTB4 measured by radioimmunoassay. However, the maximum aggregation of PMNs achieved by exposure to LTB4 (10(-7)M) was only 50% of that produced by maximally aggregating concentrations of PAF (10(-7)M). 5-Lipoxygenase inhibitors, BW755c and Nafazatrom at concentrations that completely abolished LTB4 synthesis inhibited the aggregation induced by PAF only by 40% and 50% respectively. Furthermore, desensitisation experiments revealed that the aggregatory response of PMNs to PAF was only partially refractory to prior treatment with LTB4 whereas the aggregatory response to LTB4 was completely refractory to prior treatment with PAF. These results suggest that PAF-induced aggregation of rat PMNs is in part mediated by LTB4 and in part directly by an as yet unidentified mechanism.  相似文献   

18.
K R Thomas  B Davis  J Mills 《Microbios》1979,25(100):111-123
The effects of beta-glucuronidase and chitinase have been tested on the hydrolysis of the cell walls of the economically important fungi, Aspergillus niger and Aspergillus fumigatus. The extent of wall hydrolysis was measured by assaying for total reducing sugars, N-acetyl sugars and protoplast production. Maximum reducing sugar release was attained after 40 min incubation, both with beta-glucuronidase supplemented with chitinase and beta-glucuronidase alone, whereas N-acetyl sugar release reached a maximum at 80 min incubation. beta-Glucuronidase was effective in releasing protoplasts from both species of Aspergillus. This release was enhanced by adding chitinase to the incubation medium at 0 and 20 min, but with addition at 60, 80 and 100 min increase in protoplast yield was much reduced. The results of re-incubation experiments with chitinase suggest that this enzyme may in some way be inhibited during the later stages of incubation. Pronase used in combination with beta-glucuronidase slightly enhanced protoplast release.  相似文献   

19.
When human monocytic Mono Mac 6 cells were treated with bacterial LPS (10 ng/ml, 72 h), they showed an increase in phagocytic activity, superoxide anion production, and expression of monocyte/macrophage-associated cell surface Ag. In these more mature (LPS-treated) cells but not in untreated cells, platelet-activating factor (PAF) (100 nM) produced a three- to fourfold increase in cytosolic free Ca2+ concentration. The cytosolic free Ca2+ concentration increase was inhibited by the PAF receptor antagonist L-659,989 (10 microM) and by EGTA (2 mM), indicating receptor-dependent Ca2+ influx. Furthermore, L-659,989 (10 microM), as well as PAF (1 microM), inhibited specific [3H]PAF binding in LPS-treated but not in untreated cells. Consistent with these results, PAF (100 nM) stimulated release of arachidonic acid and thromboxane B2 only in LPS-treated cells, and this could be inhibited by L-659,989 (10 microM) and EGTA (2 mM). Our data indicate that LPS up-regulates PAF-induced Ca2+ influx, resulting in arachidonic acid and eicosanoid release in Mono Mac 6 cells.  相似文献   

20.
Freshly isolated human peripheral blood monocytes from healthy volunteers were not cytotoxic to allogeneic A375 melanoma cells, but they were activated to the cytotoxic state by incubation in vitro with either des-methyl muramyl dipeptide (norMDP; minimal effective dose, 0.5 micrograms/ml) or recombinant human interferon-gamma (rIFN-gamma; minimal effective dose, 1 U/ml). A combination of subthreshold concentrations of these agents (norMDP, 0.5 micrograms/ml; rIFN-gamma, 10 U/ml) also induced significant cytotoxicity, indicating that the effects of norMDP and rIFN-gamma in monocyte activation are synergistic. Natural human IFN-gamma (nIFN-gamma) and norMDP also had similar synergistic effects. Pretreatment of rIFN-gamma with anti-IFN-gamma antibody completely inhibited its synergistic effect with norMDP in monocyte activation. Because pretreatment of rIFN-gamma and norMDP with polymyxin B did not interfere with their effects in monocyte activation, the preparations were not contaminated with lipopolysaccharide. Moreover, because pretreatment of monocyte monolayers with anti-Leu-11b antibody (anti-natural killer (NK) cell antibody) and complement did not interfere with the synergistic effects of norMDP and rIFN-gamma, whereas pretreatment with anti-Leu-M1 antibody (anti-monocyte antibody) caused complete inhibition of their effects, the observed tumor cytotoxicity of monocyte-rich monolayers was probably not due to a small number of adherent NK cells, but to the stimulation of the monocytes. Natural and recombinant IFN-alpha and IFN-beta at concentrations of greater than or equal to 100 U/ml also induced tumoricidal activity of monocytes, but unlike IFN-gamma, their effects were additive with norMDP, and they had less priming effect than IFN-gamma when they were added before norMDP to monocytes. These findings suggest that recombinant human IFN-gamma has much more synergistic potential with norMDP than IFN-alpha or IFN-beta, and this synergism of rIFN-gamma and norMDP for monocyte activation could be of clinical value in treatment of disseminated malignant diseases, because these compounds are readily available at standardized concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号