首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma lipoproteins are a source of lipids for the heart, and the proportion of electronegative low density lipoprotein [LDL(−)] is elevated in cardiometabolic diseases. Perilipin 5 (Plin5) is a crucial protein for lipid droplet management in the heart. Our aim was to assess the effect of LDL(−) on intracellular lipid content and Plin5 levels in cardiomyocytes and to determine whether these effects were influenced by hypoxia. HL-1 cardiomyocytes were exposed to native LDL [LDL(+)], LDL(−), and LDL(+) enriched in non-esterified fatty acids (NEFA) by phospholipase A2 (PLA2)-mediated lipolysis [PLA2-LDL(+)] or by NEFA loading [NEFA-LDL(+)] under normoxia or hypoxia. LDL(−), PLA2-LDL(+) and NEFA-LDL(+) raised the intracellular NEFA and triglyceride (TG) content of normoxic cardiomyocytes. Plin5 was moderately upregulated by LDL(+) but more highly upregulated by LDL(−), PLA2-LDL(+) and NEFA-LDL(+) in normoxic cardiomyocytes. Hypoxia enhanced the effect of LDL(−), PLA2-LDL(+) and NEFA-LDL(+) on intracellular TG and NEFA concentrations but, in contrast, counteracted the upregulatory effect of these LDLs on Plin5. Fluorescence microscopy experiments showed that hypoxic cardiomyocytes exposed to LDL(−), PLA2-LDL(+) and NEFA-LDL(+) have an increased production of reactive oxygen species (ROS). By treating hypoxic cardiomyocytes with WY-14643 (PPARα agonist), Plin5 remained high. In this situation, LDL(−) failed to enhance intracellular NEFA concentration and ROS production. In conclusion, these results show that Plin5 deficiency in hypoxic cardiomyocytes exposed to LDL(−) dramatically increases the levels of unpacked NEFA and ROS.  相似文献   

2.
Phospholipids are key components of biological membranes and their lipolysis with phospholipase A2 (PLA2) enzymes occurs in different cellular pH environments. Since no studies are available on the effect of pH on PLA2-modified phospholipid membranes, we performed 50-ns atomistic molecular dynamics simulations at three different pH conditions (pH 9.0, 7.5, and 5.5) using a fully PLA2-hydrolyzed phosphatidylcholine (PC) bilayer which consists solely of lysophosphatidylcholine and free fatty acid molecules. We found that a decrease in pH results in lateral squeezing of the membrane, i.e. in decreased surface area per headgroup. Thus, at the decreased pH, the lipid hydrocarbon chains had larger SCD order parameter values, and also enhanced membrane thickness, as seen in the electron density profiles across the membrane. From the lateral pressure profiles, we found that the values of spontaneous curvature of the two opposing monolayers became negative when the pH was decreased. At low pH, protonation of the free fatty acid headgroups reduces their mutual repulsion and accounts for the pH dependence of all the above-mentioned properties. The altered structural characteristics may significantly affect the overall surface properties of biomembranes in cellular vesicles, lipid droplets, and plasma lipoproteins, play an important role in membrane fission and fusion, and modify interactions between membrane lipids and the proteins embedded within them.  相似文献   

3.
Lipids play critical roles in several major chronic diseases of our times, including those that involve inflammatory sequelae such as metabolic syndrome including obesity, insulin sensitivity, and cardiovascular diseases. However, defining the substrate specificity of enzymes of lipid metabolism is a challenging task. For example, phospholipase A2 (PLA2) enzymes constitute a superfamily of degradative, biosynthetic, and signaling enzymes that all act stereospecifically to hydrolyze and release the fatty acids of membrane phospholipids. This review focuses on how membranes interact allosterically with enzymes to regulate cell signaling and metabolic pathways leading to inflammation and other diseases. Our group has developed “substrate lipidomics” to quantify the substrate phospholipid specificity of each PLA2 and coupled this with molecular dynamics simulations to reveal that enzyme specificity is linked to specific hydrophobic binding subsites for membrane phospholipid substrates. We have also defined unexpected headgroup and acyl chain specificity for each of the major human PLA2 enzymes, which explains the observed specificity at a structural level. Finally, we discovered that a unique hydrophobic binding site—and not each enzyme’s catalytic residues or polar headgroup binding site—predominantly determines enzyme specificity. We also discuss how PLA2s release specific fatty acids after allosteric enzyme association with membranes and extraction of the phospholipid substrate, which can be blocked by stereospecific inhibitors. After decades of work, we can now correlate PLA2 specificity and inhibition potency with molecular structure and physiological function.  相似文献   

4.
Phospholipase A2 and Its Role in Brain Tissue   总被引:6,自引:4,他引:2  
Abstract: Phospholipase A2 (PLA2) is the name for the class of lipolytic enzymes that hydrolyze the acyl group from the sn-2 position of glycerophospholipids, generating free fatty acids and lysophospholipids. The products of the PLA2-catalyzed reaction can potentially act as second messengers themselves, or be further metabolized to eicosanoids, platelet-activating factor, and lysophosphatidic acid. All of these are recognized as bioactive lipids that can potentially alter many ongoing cellular processes. The presence of PLA2 in the central nervous system, accompanied by the relatively large quantity of potential substrate, poses an interesting dilemma as to the role PLA2 has during both physiologic and pathologic states. Several different PLA2 enzymes exist in brain, some of which have been partially characterized. They are classified into two subtypes, CA2+-dependent and Ca2+-independent, based on their catalytic dependence on Ca2+. Under physiologic conditions, PLA2 may be involved in phospholipid turnover, membrane remodeling, exocytosis, detoxification of phospholipid peroxides, and neurotransmitter release. However, under pathological situations, increased PLA2 activity may result in the loss of essential membrane glycerophospholipids, resulting in altered membrane permeability, ion homeostasis, increased free fatty acid release, and the accumulation of lipid peroxides. These processes, along with loss of ATP, may be responsible for the loss of membrane phospholipid and subsequent neuronal injury found in ischemia, spinal cord injury, and other neurodegenerative diseases. This review outlines the current knowledge of the PLA2 found in the central nervous system and attempts to define the role of PLA2 during both physiologic and pathologic conditions.  相似文献   

5.
Phospholipase A2 (PLA2) enzymes (EC3.1.4.4) regulate the release of biologically active fatty acids and lysophospholipids from membrane phospholipid pools. These lipids are also substrates for intracellular biochemical pathways that generate potent autocrine and paracrine lipid mediators such as the eicosanoids and platelet activating factor. These factors, in turn, regulate cell proliferation, survival, differentiation, motility, tissue vascularisation, and immune surveillance in virtually all tissues, functions that are subverted by cancer cells for tumour growth and metastasis. Thus the relevance of PLA2-dependent pathways to the genesis and progression of cancer has been of interest since their discovery and with recent technological advances, their role in tumourigenesis has become more tractable experimentally. Limited human genetic studies have not yet identified PLA2 enzymes as classical mutated oncogenes or tumour suppressor genes. However, there is strong evidence that of the 22 identified human PLA2 enzymes, ten of which have been studied in cancer to date, most are aberrantly expressed in a proportion of tumours derived from diverse organs. Correlative and functional studies implicate the expression of some secreted enzymes (sPLA2s), particularly the best studied enzyme Group IIA sPLA2 in either tumour promotion or inhibition, depending on the organ involved and the biochemical microenvironment of tumours. As in immune-mediated inflammatory pathologies, genetic deletion studies in mice, supported by limited studies with human cells and tissues, have identified an important role for Group IVA PLA2 in regulating certain cancers. Pharmacological intervention studies in prostate cancer suggest that hGIIA-dependent tumour growth is dependent on indirect regulation of Group IVA PLA2. Group VI calcium-independent PLA2 enzymes have also been recently implicated in tumourigenesis with in vitro studies suggesting multiple possible roles for these enzymes. Though apparently complex, further characterization of the regulatory relationships amongst PLA2 enzymes, lipid mediator biosynthetic enzymes and the lipid mediators they produce during tumour progression is required to define the biochemical context in which the enzymes modulate cancer growth and development.  相似文献   

6.
The phospholipase A2 (PLA2) family comprises a group of lipolytic enzymes that typically hydrolyze the sn-2 position of (glycerol) phospholipids to give rise to fatty acids and lysophospholipids. The mammalian genome encodes more than 30 (even 50) PLA2s or related enzymes, which are classified into several subfamilies on the basis of their structures and functions. The PLA2 family has been implicated not only in signal transduction by producing lipid mediators, but also in membrane homeostasis, energy production, and barrier function. Disturbance of PLA2-regulated lipid pathways often hampers tissue and cellular homeostasis and can be linked to various diseases. This special issue overviews the current state of understanding of the classification, enzymatic properties, and physiological functions of various enzymes belonging to the PLA2 family. This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.  相似文献   

7.
Simonsen AC 《Biophysical journal》2008,94(10):3966-3975
Formation of liquid-ordered domains in model membranes can be linked to raft formation in cellular membranes. The lipid stoichiometry has a governing influence on domain formation and consequently, biochemical hydrolysis of specific lipids has the potential to remodel domain features. Activation of phospholipase A2 (PLA2) by ternary model membranes with three components (DOPC/DPPC/Cholesterol) can potentially change the domain structure by preferential hydrolysis of the phospholipids. Using fluorescence microscopy, this work investigates the changes in domain features that occur upon PLA2 activation by such ternary membranes. Double-supported membranes are used, which have minimal interactions with the solid support. For membranes prepared in the coexistence region, PLA2 induces a decrease of the liquid-disordered (Ld) phase and an increase of the liquid-ordered (Lo) phase. A striking observation is that activation by a uniform membrane in the Ld phase leads to nucleation and growth of Lo-like domains. This phenomenon relies on the initial presence of cholesterol and no PLA2 activation is observed by membranes purely in the Lo phase. The observations can be rationalized by mapping partially hydrolyzed islands onto trajectories in the phase diagram. It is proposed that DPPC is protected from hydrolysis through interactions with cholesterol, and possibly the formation of condensed complexes. This leads to specific trajectories which can account for the observed trends. The results demonstrate that PLA2 activation by ternary membrane islands may change the global lipid composition and remodel domain features while preserving the overall membrane integrity.  相似文献   

8.
We describe the interaction of various phospholipases A2 (PLA2) from snake venoms of the family Viperidae (Macrovipera lebetina obtusa, Vipera ursinii renardi, Bothrops asper) with giant unilamellar vesicles (GUVs) composed of natural brain phospholipids mixture, visualized through fluorescence microscopy. The membrane fluorescent probes 8-anilino-1-naphthalenesulfonicacid (ANS), LAUDRAN and PRODAN were used to assess the state of the membrane and specifically mark the lipid packing and membrane fluidity. Our results have shown that the three PLA2s which contain either of aspartic acid, serine, or lysine residues at position 49 in the catalytic center, have different effects on the vesicles. The PLA2 with aspartic acid at this position causes the oval deformation of the vesicles, while serine and lysine-containing enzymes lead to an appreciable increase of fluorescence intensity in the vesicles membrane, wherein the shape and dimensions of GUVs have not changed, but in this case GUV aggregation occurs. LAURDAN and PRODAN detect the extent of water penetration into the bilayer surface. We calculated generalized polarization function (GP), showing that for all cases (D49 PLA2, S49 PLA2 and K49 PLA2) both LAUDRAN and PRODAN GP values decrease. A higher LAURDAN GP is indicative of low water penetration in the lipid bilayer in case of K49 PLA2 compared with D49 PLA2, whereas the PRODAN mainly gives information when lipid is in liquid crystalline phase.  相似文献   

9.
Atomic force microscopy (AFM) is employed to reveal the morphological changes of the supported phospholipid bilayers hydrolyzed by a phospholipase A2 (PLA2) enzyme in a buffer solution at room temperature. Based on the high catalytic selectivity of PLA2 toward l-enantiomer phospholipids, five kinds of supported bilayers made of l- and d-dipalmitoylphosphatidylcholines (DPPC), including l-DPPC (upper leaflet adjacent to solution)/l-DPPC (bottom leaflet) (or l/l in short), l/d, d/l, d/d, and racemic ld/ld, were prepared on a mica surface in gel-phase, to explicate the kinetics and mechanism of the enzyme-induced hydrolysis reaction in detail. AFM observations for the l/l bilayer show that the hydrolysis rate for l-DPPC is significantly increased by PLA2 and most of the hydrolysis products desorb from substrate surface in 40 min. As d-enantiomers are included in the bilayer, the hydrolysis rate is largely decreased in comparison with the l/l bilayer. The time used to hydrolyze the as-prepared bilayers by PLA2 increases in the sequence of l/l, l/d, ld/ld, and d/l (d/d is inert to the enzyme action). d-enantiomers in the enantiomer hybrid bilayers remain on the mica surface at the end of the hydrolysis reaction. It was confirmed that the hydrolysis reaction catalyzed by PLA2 preferentially occurs at the edges of pits or defects on the bilayer surface. The bilayer structures are preserved during the hydrolysis process. Based on these observations, a novel kinetics model is proposed to quantitatively account for the PLA2-catalyzed hydrolysis of the supported phospholipid bilayers. The model simulation demonstrates that PLA2 mainly binds with lipids at the perimeter of defects in the upper leaflet and leads to a hydrolysis reaction, yielding species soluble to the solution phase. The lipid molecules underneath subsequently flip up to the upper leaflet to maintain the hydrophilicity of the bilayer structure. Our analysis shows that d-enantiomers in the hybrid bilayers considerably reduce the hydrolysis rate by its ineffective binding with PLA2.  相似文献   

10.
The goal of the present study is to elucidate the effect of sphingomyelin on interfacial binding of Taiwan cobra phospholipase A2 (PLA2). Substitution of Asn-1 with Met caused a reduction in enzymatic activity and membrane-damaging activity of PLA2 toward phospholipid vesicles, while sphingomyelin exerted an inhibitory effect on the biological activities of native and mutated PLA2. Incorporation of sphingomyelin reduced membrane fluidity of phospholipid vesicles as evidenced by Laurdan fluorescence measurement. The results of self-quenching studies, binding of fluorescent probe, trinitrophenylation of Lys residues and fluorescence energy transfer between protein and lipid revealed that sphingomyelin altered differently membrane-bound mode of native and mutated PLA2. Moreover, it was found that PLA2 and N-terminally mutated PLA2 adopted different conformation and geometrical arrangement on binding with membrane bilayer. Nevertheless, the binding affinity of PLA2 and N-terminal mutant for phospholipid vesicles was not greatly affected by sphingomyelin. Together with the finding that mutation on N-terminus altered the gross conformation of PLA2, our data indicate that sphingomyelin modulates the mode of membrane binding of PLA2 at water/lipid interface, and suggest that the modulated effect of sphingomyelin depends on inherent structural elements of PLA2.  相似文献   

11.
Low-density lipoprotein (LDL) oxidation is the primary event in atherosclerosis, and LDL lipoperoxidation leads to modifications in apolipoprotein B-100 (apo B-100) and lipids. Intermediate species of lipoperoxidation are known to be able to generate amino acid-centered radicals. Thus, we hypothesized that lipoperoxidation intermediates induce protein-derived free radical formation during LDL oxidation. Using DMPO and immuno-spin trapping, we detected the formation of protein free radicals on LDL incubated with Cu2+ or the soybean lipoxidase (LPOx)/phospholipase A2 (PLA2). With low concentrations of DMPO (1 mM), Cu2+ dose-dependently induced oxidation of LDL and easily detected apo B-100 radicals. Protein radical formation in LDL incubated with Cu2+ showed maximum yields after 30 min. In contrast, the yields of apo B-100 radicals formed by LPOx/PLA2 followed a typical enzyme-catalyzed kinetics that was unaffected by DMPO concentrations of up to 50 mM. Furthermore, when we analyzed the effect of antioxidants on protein radical formation during LDL oxidation, we found that ascorbate, urate, and Trolox dose-dependently reduced apo B-100 free radical formation in LDL exposed to Cu2+. In contrast, Trolox was the only antioxidant that even partially protected LDL from LPOx/PLA2. We also examined the kinetics of lipid radical formation and protein radical formation induced by Cu2+ or LPOx/PLA2 for LDL supplemented with α-tocopherol. In contrast to the potent antioxidant effect of α-tocopherol on the delay of LDL oxidation induced by Cu2+, when we used the oxidizing system LPOx/PLA2, no significant protection was detected. The lack of protection of α-tocopherol on the apo B-100 and lipid free radical formation by LPOx may explain the failure of vitamin E as a cardiovascular protective agent for humans.  相似文献   

12.
Plasma phospholipases A2 (PLA2) hydrolyze phospholipids of circulating lipoproteins or deposited in arteries producing bioactive lipids believed to contribute to the atherosclerotic inflammatory response. PLA2(s) are elevated in obesity and type 2 diabetes (T2D) but it is not clear which of these conditions is the cause since they frequently coexist. This study attempts to evaluate if high plasma PLA2(s) activities and markers of their effects in lipoproteins are associated with obesity or T2D diabetes, or with both. Total PLA2 and Ca2+‐dependent and ‐independent activities, lipids, lipoproteins, apoAI, and apoB apolipoproteins and affinity of apoB‐lipoproteins for arterial proteoglycans were measured, as well as Inflammation markers. These parameters were evaluated in plasma samples of four groups: (i) apparently healthy controls with normal BMI (nBMI), (ii) obese subjects with no T2D, (iii) patients with T2D but with nBMI, and (iv) obese patients with T2D. PLA2 activities were measured in the presence and absence of Ca2+ and in the presence of specific inhibitors. Obese subjects, with or without T2D, had high activities of total PLA2 and of Ca2+‐dependent and Ca2+‐independent enzymes. The activities were correlated with inflammation markers in obese subjects with and without diabetes and with alterations of low‐density lipoproteins (LDLs) that increased their affinity for arterial proteoglycans. Ca2+‐dependent secretory (sPLA2) enzymes were the main responsible of the obesity‐associated high activity. We speculate that augmented PLA2(s) activity that increases affinity of circulating LDL for arterial intima proteoglycans could be another atherogenic component of obesity.  相似文献   

13.
Phosphoinositides like phosphatidylinositol 4,5-bisphosphate (PIP2) are negatively charged lipids that play a pivotal role in membrane trafficking, signal transduction, and protein anchoring. We have designed a force field for the PIP2 headgroup using quantum mechanical methods and characterized its properties inside a lipid bilayer using molecular dynamics simulations. Macroscopic properties such as area/headgroup, density profiles, and lipid order parameters calculated from these simulations agree well with the experimental values. However, microscopically, the PIP2 introduces a local perturbation of the lipid bilayer. The average PIP2 headgroup orientation of 45° relative to the bilayer normal induces a unique, distance-dependent organization of the lipids that surround PIP2. The headgroups of these lipids preferentially orient closer to the bilayer normal. This perturbation creates a PIP2 lipid microdomain with the neighboring lipids. We propose that the PIP2 lipid microdomain enables the PIP2 to function as a membrane-bound anchoring molecule.  相似文献   

14.
Phospholipase A2 (PLA2) is responsible for the lipid hydrolysis process. Fish PLA2 have warranted renewed interest due to their excellent properties in phospholipid digestion. We report for the first time the catalytic properties of a PLA2 secreted from the intestine of the annular seabream Diplodus annularis (IDaPLA2). The refolded IDaPLA2 was purified to homogeneity and showed a molecular mass of around 15 kDa attested by SDS-PAGE and MALDI-TOF analyses. Interestingly, IDaPLA2 revealed higher thermostability compared to mammal pancreatic sPLA2 as it was active and stable at 55 °C with specific activity of 290 U mg−1 on phosphatidylcholine (PC) as a substrate. Using the lipid monolayer technique, the activity of IDaPLA2 was found to be 21.68, 6.88 and 5.66 mol cm−2 min−1 mM−1 using phosphatidylglycerol (PG), PC and phosphatidylethanolamine (PE) monolayers, respectively, at surface pressures from 20−30 mN m−1. Interestingly, the interfacial activity of IDaPLA2 measured at higher surface pressures may highlight its ability to penetrate into phospholipid monolayers suggesting its involvement in cell lipid membrane degradation which can explain the cytotoxicity potential towards macrophage. The docking simulation data provided insights into the involvement of some key amino-acids in substrate binding and selectivity. The dynamic simulation proved the high stability of IDaPLA2. Overall, these results provide original evidence on the involvement of IDaPLA2 into the lipid hydrolysis suggesting it as a potential target in biotechnological applications.  相似文献   

15.
Astrocytes comprise the major cell type in the central nervous system (CNS) and they are essential for support of neuronal functions by providing nutrients and regulating cell-to-cell communication. Astrocytes also are immune-like cells that become reactive in response to neuronal injury. Phospholipases A2 (PLA 2) are a family of ubiquitous enzymes that degrade membrane phospholipids and produce lipid mediators for regulating cellular functions. Three major classes of PLA 2 are expressed in astrocytes: group IV calcium-dependent cytosolic PLA 2 (cPLA2), group VI calcium-independent PLA 2 (iPLA2), and group II secretory PLA 2 (sPLA2). Upregulation of PLA 2 in reactive astrocytes has been shown to occur in a number of neurodegenerative diseases, including stroke and Alzheimer’s disease. This review focuses on describing the effects of oxidative stress, inflammation, and activation of G protein-coupled receptors on PLA 2 activation, arachidonic acid (AA) release, and production of prostanoids in astrocytes.  相似文献   

16.
Phospholipase A2 (PLA2) increases adenylate cyclase (AC) activity in the rat caudate nucleus in a dose-dependent manner. After maximal stimulation by fluoride, PLA2 treatment further increases AC activity 2.4 fold. Adenylate cyclase activity is maximal after 45% hydrolysis of the phospholipids. Of the products of PLA2 treatment only lysophosphatidylcholine (LPC) produces such an increase in AC activity. In contrast to PLA2 treatment, LPC solubilizes the enzyme, decreases the Km value for ATP, and requires much larger amounts of LPC than that produced by lipase treatment. After maximal stimulation with fluoride and PLA2, removal of most of the LPC does not reduce the activity of adenylate cyclase. These findings suggest that removal of membrane lipid rather than generation of LPC is responsible for the activation of brain adenylate cyclase by phospholipase A2.  相似文献   

17.
Abstract: Exogenous phospholipases have been used extensively as tools to study the role of membrane lipids in receptor mechanisms. We used in vitro quantitative autoradiography to evaluate the effect of phospholipase A2 (PLA2) on N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptors in rat brain. PLA2 pretreatment induced a significant increase in α-[3H]amino-3-hydroxy-5-methylisoxazole-4-propionate ([3H]AMPA) binding in the stratum radiatum of the CA1 region of the hippocampus and in the stratum moleculare of the cerebellum. No modification of [3H]AMPA binding was found in the stratum pyramidale of the hippocampus at different ligand concentrations. [3H]-Glutamate binding to the metabotropic glutamate receptor and the non-NMDA-, non-kainate-, non-quisqualate-sensitive [3H]glutamate binding site were also increased by PLA2 pretreatment. [3H]Kainate binding and NMDA-sensitive [3H]glutamate binding were minimally affected by the enzyme pretreatment. The PLA2 effect was reversed by EGTA, the PLA2 inhibitor p-bromophenacyl bromide, and prolonged pretreatment with heat. Bovine serum albumin (1%) prevented the increase in metabotropic binding by PLA2. Arachidonic acid failed to mimic the PLA2 effect on metabotropic binding. These results indicate that PLA2 can selectively modulate certain subtypes of excitatory amino acid receptors. This effect is due to the enzymatic activity but is probably not correlated with the formation of arachidonic acid metabolites. Independent of their possible physiological implications, our results provide the first autoradiographic evidence that an enzymatic treatment can selectively affect the binding properties of excitatory amino acid receptors in different regions of the CNS.  相似文献   

18.
Changes in activity of phospholipase A2 (PLA2), a key enzyme in lipid metabolism and signal network in defence mechanisms, were investigated in Solanum species and Phytophthora infestans interaction. We have compared PLA2 activity in response to an elicitor, a culture filtrate (CF) derived from P. infestans, in non-host resistant Solanum nigrum var. gigantea, field resistant S. tuberosum cv Bzura and susceptible S. tuberosum clone H-8105. To elucidate the contribution of specific forms of PLA2 to plant defence mechanism reasonably selective PLA2 inhibitors, haloenol lactone suicide substrate (HELSS) and p-bromophenacyl bromide (BPB), which discriminate between Ca+2-independent PLA2 (iPLA2) and Ca+2-dependent secretory PLA2 (sPLA2), were used. The in vivo and in vitro effects of the inhibitors on PLA2 activity and on generation of reactive oxygen species (ROS) induced by CF in the studied plants were assayed. We found that PLA2 activity increased in response to CF treatment, displaying various kinetics and intensity depending on the resistance status of a given genotype. Differences among the genotypes in the effects of each inhibitor on CF-induced PLA2 activity and on ROS production may reflect the diversity of PLA2 isoforms in plants. Contrary to BPB, the inhibitory effect of HELSS was observable mainly on CF-induced PLA2 activity, which suggests that iPLA2 participates in signal transduction in defence reactions. Various effects of the two inhibitors on PLA2 activity and ROS production suggest different contribution of sPLA2 and iPLA2 to modulation of defence reactions in the interaction between Solanum genotypes and P. infestans.  相似文献   

19.
Phospholipase A2 (PLA2) enzymes catalyze the hydrolysis of ester bonds at sn-2 positions of glycerophospholipids (PL), producing free fatty acids and lysophospholipids. In mammals, the PLA2 superfamily comprises more than 30 known enzymes, including various structurally and biochemically different enzymes with diverse biological functions. Some of the enzymes are involved in the production of lipid mediators, including eicosanoids and lysophospholipid-related lipid mediators. Among them, cytosolic PLA2α (cPLA2α), a member of cPLA2 family, is one of the most important intracellular PLA2s. Upon cell activation, cPLA2α is activated and involved in eicosanoid production under various physiological and pathological conditions. PLA2s also play a role in membrane PL remodeling by coupling with re-acylation processes mediated by lysophospholipid acyltransferases (LPLATs) to generate sn-1/sn-2 fatty acid asymmetry of PLs. This review summarizes the biochemical and in vivo roles of cPLA2 enzymes and LPLATs, including results from animal and human studies.This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.  相似文献   

20.
In the acute phase of the inflammatory response, secretory phospholipase A2 (sPLA2) reaches its maximum levels in plasma, where it is mostly associated with high density lipoproteins (HDL). Overexpression of human sPLA2 in transgenic mice reduces both HDL cholesterol and apolipoprotein A-I (apoA-I) plasma levels through increased HDL catabolism by an unknown mechanism. To identify unknown PLA2-mediated activities on the molecular components of HDL, we characterized the protein and lipid products of the PLA2 reaction with HDL. Consistent with previous studies, hydrolysis of HDL phospholipids by PLA2 reduced the particle size without changing its protein composition. However, when HDL was destabilized in the presence of PLA2 by the action of cholesteryl ester transfer protein or by guanidine hydrochloride treatment, a fraction of apoA-I, but no other proteins, dissociated from the particle and was rapidly cleaved. Incubation of PLA2 with lipid-free apoA-I produced similar protein fragments in the range of 6–15 kDa, suggesting specific and direct reaction of PLA2 with apoA-I. Mass spectrometry analysis of isolated proteolytic fragments indicated at least two major cleavage sites at the C-terminal and the central domain of apoA-I. ApoA-I proteolysis by PLA2 was Ca2+-independent, implicating a different mechanism from the Ca2+-dependent PLA2-mediated phospholipid hydrolysis. Inhibition of proteolysis by benzamidine suggests that the proteolytic and lipolytic activities of PLA2 proceed through different mechanisms. Our study identifies a previously unknown proteolytic activity of PLA2 that is specific to apoA-I and may contribute to the enhanced catabolism of apoA-I in inflammation and atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号