首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
In spinach seedlings and roots, NADH-nitrate reductase (NR)activity (per g fresh weight) decreased as the seedlings aged.Experiments using double immunodiffusion analysis and immunotitrationshowed no differences in the immunological properties of NRfrom spinach seedlings at various stages of aging. Comparisonof spinach leaf to the spinach root enzyme using the Ouchterlonydouble diffusion technique revealed a high degree of similaritybetween them. (Received November 6, 1985; Accepted March 4, 1986)  相似文献   

2.
Nitrite reductase (EC 1.6.6.4) has been purified 730-fold from spinach leaves. The enzyme catalyzes the reduction of nitrite to ammonia, with the use of reduced form of methyl viologen and ferredoxin. A stoichiometry of one molecule of nitrite reduced per molecule of ammonia formed has been found. KCN at 2.5×10-4 m inhibited nitrite reductase activity almost completely. Purified enzyme was almost homogeneous by disk electrophoresis with polyacrylamide gel. The molecular weight of the enzyme was estimated to be 61,000 from gel filtration. Nitrite reductase, in the oxidized form, has absorption maxima at 276, 388 and 573 mμ. Both methyl viologen and ferredoxin linked nitrite reductase activities of the enzyme were inactivated on exposure to low ionic strength.  相似文献   

3.
Dehydroascorbate (DHA) reductase (EC 1.8.5.1 [EC] ) was purified fromspinach leaves to nearly a homogeneous state, judging from polyacrylamidegel electrophoresis. The enzyme was found to be a monomer witha molecular weight of 23,000 with apparent Km values for GSHand DHA of 2.5 and 0.07 nu, respectively. Kinetic studies indicatedthat the reaction proceeds by an ordered or random mechanisminvolving the formation of a ternary complex. The enzyme wasinhibited by thiol reagents and DHA could partly protect theenzyme thiol group. Incubation of the inactivated enzyme withGSH led to slight recovery of the activity. NADH, NADPH, cysteineor reduced thioredoxin could not replace GSH as an electrondonor. Thus, the thiol group(s) participates in the reactionof DHA reductase. (Received August 5, 1983; Accepted October 26, 1983)  相似文献   

4.
Plasma membranes obtained by two-phase partitioning of microsomal fractions from spinach (Spinacea oleracea L. cv Medania) and sugar beet leaves (Beta vulgaris L.) contained relatively high NADH-ferricyanide reductase and NADH-nitrate reductase (NR; EC 1.6.6.1) activities. Both of these activities were latent. To investigate whether these activities were due to the same enzyme, plasma membrane polypeptides were separated with SDS-PAGE and analyzed with immunoblotting methods. Antibodies raised against microsomal NADH-ferricyanide reductase (tentatively identified as NADH-cytochrome b5 reductase, EC 1.6.2.2), purified from potato (Solanum tuberosum L. cv Bintje) tuber microsomes, displayed one single band at 43 kilodaltons when reacted with spinach plasma membranes, whereas lgG produced against NR from spinach leaves gave a major band at 110 kilodaltons together with a few fainter bands of lower molecular mass. Immunoblotting analysis using inside-out and right-side-out plasma membrane vesicles strongly indicated that NR was not an integral protein but probably trapped inside the plasma membrane vesicles during homogenization. Proteins from spinach plasma membranes were solubilized with the zwitterionic detergent 3-[(3-cholamidopropyl) dimethylammonio] 1-propane-sulfonate and separated on a Mono Q anion exchange column at pH 5.6 with fast protein liquid chromatography. One major peak of NADH-ferricyanide reductase activity was found after separation. The peak fraction was enriched about 70-fold in this activity compared to the plasma membrane. When the peak fractions were analyzed with SDS-PAGE the NADH-ferricyanide reductase activity strongly correlated with a 43 kilodalton polypeptide which reacted with the antibodies against potato microsomal NADH-ferricyanide reductase. Thus, our data indicate that most, if not all, of the truly membrane-bound NADH-ferricyanide reductase activity of leaf plasma membranes is due to an enzyme very similar to potato tuber microsomal NADH-ferricyanide reductase (NADH-cytochrome b5 reductase).  相似文献   

5.
A cDNA encoding glutathione reductase (EC 1.6.4.2 [EC] ) from Arabidopsisthaliana was cloned by immunoscreening. The amino acid sequencededuced from the nucleotide sequence agrees with the N-terminalamino acid sequence of the major isozyme (GR II) purified fromleaves of A. thaliana. The predicted polypeptide comprises anN-terminal leader sequence of 74 amino acids, which has featuresof chloroplast-targeting peptides, and a mature polypeptideof 491 residues with a molecular mass of 52.7 kDa, which showshomology with glutathione reductases from other species. TheKm for GSSG was 44 µM and that for NADPH was 5.0 µMfor GR II at 25C. The pH optimum for GR II was 7.5 to 8.0.The native molecular mass of GR II was 110 kDa, indicating thatGR II is a homodimer. GR II had an isoelectric point of 4.8.The cDNA hybridizes with a 2.1-kb poly(A)+RNA from leaves ofA. thaliana. Genomic Southern analysis indicates that the genecorresponding to the cDNA is likely a single-copy gene. (Received July 1, 1993; Accepted September 8, 1993)  相似文献   

6.
Specific antibodies to sepiapterin reductase were used to investigate its involvement in de novo (6R)-5,6,7,8-tetrahydrobiopterin (BH4) biosynthesis in rat brain. Antisepiapterin reductase (anti-SR) serum totally inhibited NADPH-dependent sepiapterin reductase activity in supernatants from discrete rat brain areas and liver. The anti-SR serum also inhibited the conversion of 7,8-dihydroneopterin triphosphate to BH4 in rat brain extracts. The inhibition was accompanied by a concentration-dependent increase in the formation of 6-lactoyltetrahydropterin (6LPH4), a proposed intermediate in BH4 biosynthesis. In addition, anti-SR serum was used to characterize the distribution and molecular properties of sepiapterin reductase in rat tissues. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by Western blotting indicated that there was a single polypeptide with the same molecular weight (28,000) as that of the subunit of pure sepiapterin reductase present in all tissues examined except for liver, where an immunoreactive protein of higher molecular weight (30,500) also was detected. Two-dimensional gel electrophoresis of rat striatum and liver demonstrated that the isoelectric point of sepiapterin reductase from both tissues was 6.16 and that the higher molecular weight immunoreactive material in liver had an isoelectric point of 7.06. Our studies with specific anti-SR serum confirmed the results of previous studies using chemical inhibitors of sepiapterin reductase, which suggested that sepiapterin reductase activity was essential for BH4 biosynthesis in the CNS and that 6LPH4 could be a precursor of BH4.  相似文献   

7.
Initial velocity studies of immunopurified spinach nitrate reductase have been performed under conditions of controlled ionic strength and pH and in the absence of chloride ions. Increased ionic strength stimulated NADH:ferricyanide reductase and reduced flavin:nitrate reductase activities and inhibited NADH:nitrate reductase, NADH:cytochrome c reductase and reduced methyl viologen:nitrate reductase activities. NADH:dichlorophenolindophenol reductase activity was unaffected by changes in ionic strength. All of the partial activities, expressed in terms of micromole 2 electron transferred per minute per nanomole heme, were faster than the overall full, NADH:nitrate reductase activity indicating that none of the partial activities included the rate limiting step in electron transfer from NADH to nitrate. The pH optimum for NADH:nitrate reductase activity was determined to be 7 while values for the various partial activities ranged from 6.5 to 7.5. Chlorate, bromate, and iodate were determined to be alternate electron acceptors for the reduced enzyme. These results indicate that unlike the enzyme from Chlorella vulgaris, intramolecular electron transfer between reduced heme and Mo is not rate limiting for spinach nitrate reductase.  相似文献   

8.
Ferredoxin-nitrite reductase [EC 1.7.7.1] has been purified to apparent homogeneity from rice (Oryza satira cv. Kinmaze) leaves by a procedure used for the spinach enzyme [S. Ida and B. Mikami, Biochim. Biophys. Acta, 681, 167 (1986)]. The rice enzyme consists of a single polypeptide of % molecular weight of 60,000 with 536 amino acid residues. The enzyme showed nearly identical absorption, circular dichroism, and magnetic circular dichroism spectra to those of the spinach enzyme, indicating the presence of the same prosthetic groups and protein conformation in both enzymes. The apparent Km values for nitrite and methyl viologen were 360 μm and 63 μm, respectively. The pH optimum was 7.6. These kinetic parameters are indistinguishable from those reported for spinach nitrite reductase. Monospecific antiserum against purified rice enzyme cross-reacted with nitrite reductases from a variety of higher plants and some phylogenetically divergent plants. Immunological comparisons indicated the rice enzyme is much more closely related to the other monocot enzymes in antigenic structure than to the dicot enzyme proteins. The results lend further support to our previous study [S. Ida, Plant Sci., 49, 111 (1987)] that spinach ferredoxin-nitrite reductase is serologically more related to the dicot enzymes than to the monocot nitrite reductases. Conspicuous differences between the rice and spinach enzymes were found in their molecular sizes and antigenicity. Relatedness of amino acid compositions of the enzyme proteins is discussed in relation to antigenic properties of ferredoxin-nitrite reductase.  相似文献   

9.
The activities of 2-oxoaldehyde-metabolizing enzymes (glyoxalase I, glyoxalase II, methyl- glyoxal reductase, methylglyoxal dehydrogenase and lactaldehyde dehydrogenase) were found to be widely distributed among microorganisms. One of the enzymes, methylglyoxal reductase, which catalyzes the reductive conversion of methylglyoxal into lactaldehyde, was purified from Escherichia coli cells. The enzyme was judged to be homogeneous on polyacrylamide gel electrophoresis and was a monomer with a molecular weight of 43000. The enzyme was most active at pH 6.5 and 45°C. The enzyme utilized both NADPH and NADH for the reduction of 2- oxoaldehydes (glyoxal, methylglyoxal, phenylglyoxal and 4,5-dioxovalerate) and some aldehydes (glycolaldehyde, D,l-glyceraldehyde, propionaldehyde and acetaldehyde). The Km values of the enzyme for methylglyoxal, NADPH and NADH were 4.0 mm, 1.7 fiM and 2.8 /¿m, respectively. The product of methylglyoxal reduction was identified as lactaldehyde. The enzyme from E. coli cells was different from the yeast and goat liver enzymes in both molecular structure and substrate specificity.  相似文献   

10.
Colchicine is a drug used for the treatment of FMF, primary biliary cirrhosis, psoriasis, Behçet’s disease, aphthous stomatitis. Glutathione reductase (GR; E.C 1.6.4.2) is a crucial enzyme which reduces glutathione disulphide to the sulfhydryl form GSH by the NADPH-dependent reduction, which is an important cellular antioxidant system. The purpose of the present work is to evaluate the in vitro effects of colchicine on GR from various sources. The component of glutathione redox cycle, GR, plays important role in the protection of the cell from the toxic effects of reactive oxygen species. Due to its significance the enzyme has been purified from a number of animals, plants and microbial sources and studied the in vitro effects of many chemical compounds or drugs on enzyme activity. We have established that colchicine inhibits GR in a concentration dependent manner. We have investigated the kinetic characterization, inhibition types and constants (Ki).  相似文献   

11.
Two monoclonal antibodies, 17(3)9 and 36(79)4, were preparedagainst nitrate reductase from Spinacia oleracea L. leaves.An enzyme-linked immunosorbent assay showed that 17(3)9, butnot 36(79)4, reacted more strongly to heat-denatured than nativeantigen. These antibodies inhibited NADH-nitrate reductase aswell as its various partial activities including reduced methylvilogen-nitrate reductase, reduced flavin mononucleotide-nitratereductase and NADH-cytochrome c reductase activities, but notNADH-ferricyanide reductase activity. Immunoblotting after electrophoreticseparation of nitrate reductase fragments obtained by Staphyrococcusaureus V8 protease digestion of native enzyme revealed thatthe two monoclonal antibodies bind to different epitopes locatedon the 28 kDa of the NADH-ferricyanide reductase domain. (Received October 2, 1987; Accepted June 9, 1988)  相似文献   

12.
In spruce (Picea abies) needles glutathione and glutathione reductase show a periodic seasonal variation with significantly increased levels during the winter. It is proposed that glutathione and glutathione reductase play an important role for the winter hardiness of leaves from evergreen plants.  相似文献   

13.
Malaria parasites adapt to the oxidative stress during their erythrocytic stages with the help of vital thioredoxin redox system and glutathione redox system. Glutathione reductase and thioredoxin reductase are important enzymes of these redox systems that help parasites to maintain an adequate intracellular redox environment. In the present study, activities of glutathione reductase and thioredoxin reductase were investigated in normal and Plasmodium berghei-infected mice red blood cells and their fractions. Activities of glutathione reductase and thioredoxin reductase in P. berghei-infected host erythrocytes were found to be higher than those in normal host cells. These enzymes were mainly confined to the cytosolic part of cell-free P. berghei. Full characterization and understanding of these enzymes may promise advances in chemotherapy of malaria.  相似文献   

14.
Glutathione reductase [GR, E.C.1.8.1.7] catalyses NADPH dependent reduction of glutathione disulfide (GSSG) to reduced glutathione (GSH). Thus, it is the crucial enzyme to maintain high [GSH]/[GSSG] ratio and physiological redox status in cells. Kidney and liver tissues were considered as a rich source of GR. In this study, rat kidney GR was purified and some of its properties were investigated. The enzyme was purified 2,356 fold with a yield of 16% by using heat-denaturation and Sephadex G25 gel filtration, 2′,5′-ADP Agarose 4B, PBE94 column chromatographies. The purified enzyme had a specific activity (Vm) of 250 U/mg protein and the ratio of absorbances at wavelengths of A 273/A 463, A 280/A 460, A 365/A 460, and A 379/A 463, were 7.1, 6.8, 1.2 and 1.0, respectively. Each mol of GR subunit bound 0.97 mol of FAD. NADH was used as a coenzyme by rat kidney GR but with a lower efficiency (32.7%) than NADPH. Its subunit molecular weight was estimated as 53 kDa. An optimum pH of 6.5 and optimum temperature of 65 °C were found for rat kidney GR. Its activation energy (Ea) and temperature coefficient (Q10) were calculated as 7.02 kcal/mol and 1.42, respectively. The Km(NADPH) and kcat/Km (NADPH) values were found to be 15.3 ± 1.4 μM and 1.68 × 107 M−1 s−1 for the concentration range of 10-200 μM NADPH and when GSSG is the variable substrate, the Km(GSSG) and the kcat/Km(GSSG) values of 53.1 ± 3.4 μM and 4.85 × 106 M−1 s−1 were calculated for the concentration range of 20–1,200 μM GSSG.  相似文献   

15.
谷胱甘肽生物合成及代谢相关酶的研究进展   总被引:1,自引:0,他引:1  
谷胱甘肽是广泛存在于生物体内的一个含有γ-肽键的生物活性三肽,其中游离的巯基是其活性中心。在生物体内谷胱甘肽主要是由GSH I和GSH II两个酶依次催化合成,而GSH I和GSH II的进化过程复杂,由此衍生出多条生物合成途径,其代谢过程在不同生物体内也复杂多样。本文主要综述了谷胱甘肽生物合成及代谢相关酶的研究进展和利用基因工程手段提高胞内谷胱甘肽含量的策略。  相似文献   

16.
Steady state rates of NADP reduction decline upon commencement of nitrite reduction in reconstituted chloroplast preparations. Similarly, steady state rates of nitrite reduction are lower, but not zero, during concurrent NADP reduction. These results imply that competition for substrate occurs and suggest that nitrite reduction can successfully compete for reduced ferredoxin, even at high rates of NADP reduction.  相似文献   

17.
植物谷胱甘肽的生物合成及其生物学功能   总被引:5,自引:0,他引:5  
谷胱甘肽(glutathione,GSH)是硫酸根还原同化途径中主要的含硫非蛋白终端产物,在生物中以还原型谷胱甘肽(reduced glutathione,GSH)和氧化型谷胱甘肽(oxidized glutathione,GSSG)存在。因其在植物体中的广泛存在和独特的还原能力得到广泛关注。本文从谷胱甘肽在植物体内的生物合成,谷胱甘肽的区划、运输和降解以及在非生物胁迫条件下的生物学功能等方面论述了近年来国内外对谷胱甘肽的研究进展。  相似文献   

18.
Glutathione synthetase isolated from a mold, Aspergillus niger, had a molecular weight of 110,000 and consisted of two apparently identical subunits, each with a molecular weight of 55,000. The enzyme was most active at pH 8.5. It specifically utilized glycine and ATP, and required Mg2 + or Mn2 + for its catalytic function. A comparison of glutathione synthetases from various sources indicated that the enzyme of eukaryotes (mammals, molds and yeasts) differ from those of prokaryotes {Escherichia coli B and Proteus mirabilis) in molecular structure, although the enzymes from both types of organisms contain an active site thiol and catalyze the same reaction.  相似文献   

19.
植物谷胱甘肽还原酶的生物学特性及功能   总被引:4,自引:0,他引:4  
谷胱甘肽还原酶(glutathione reductase,GR: EC 1.6.4.2)是植物体内一种重要的抗氧化酶类,其主要的生理功能是将氧化型谷胱甘肽(oxidaized glutathione disulfide,GSSG)还原成还原型谷胱甘肽(reduced glutathione,GSH),从而为活性氧(reactive oxygen species,ROS)的清除提供还原力,保护植物免受伤害.文中主要从Gr基因及其氨基酸序列的比较等方面分析了该酶的生物学特性;又对植物逆境响应,酶基因的缺失等方面的研究进行综述,阐释了GR酶在植物体内的作用原理、在逆境胁迫中抗逆表达调控途径及其作用机制;并对已有的研究成果进行总结分析,探讨了GR酶可能的起源及系统进化过程,为今后该酶的研究提供理论参考.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号