首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
2.
Electrochemical analysis of lignin peroxidase (LiP) was performed using a pyrolytic graphite electrode coated with peroxidase-embedded tributylmethyl phosphonium chloride membrane. The formal redox potential of ferric/ferrous couples of LiP was −126 mV (versus SHE), which was comparable with that of manganese peroxidase (MnP) and horseradish peroxidase (HRP). Yet, only LiP is capable of oxidizing non-phenolic substrates with a high redox potential. Since with decreasing pH, the redox potential increased, an incredibly low pH optimum of LiP as peroxidase at 3.0 or lower was proposed as the clue to explain LiP mechanisms. A low pH might be the key for LiP to possess a high redox potential. The pKa values for the distal His in peroxidases were calculated using redox data and the Nernst equation, to be 5.8 for LiP, 4.7 for MnP, and 3.8 for HRP. A high pKa value of the distal His might be crucial for LiP compound II to uptake a proton from the solvent. As a result, LiP is able to complete its catalytic cycle during the oxidation of non-proton-donating substrates. In compensation, LiP has diminished its reactivity toward hydrogen peroxide.  相似文献   

3.
Mushrooms are able to secrete lignin peroxidase (LiP) and manganese peroxidase (MnP), and able to use the cellulose as sources of carbon. This article focuses on the relation between peroxidase-secreting capacity and cultivation period of mushrooms with non-laccase activity. Methylene blue and methyl catechol qualitative assay and spectrophotometry quantitative assay show LiP secreting unvaryingly accompanies the MnP secreting in mushroom strains. The growth rates of hyphae are detected by detecting the dry hyphal mass. We link the peroxidase activities to growth rate of mushrooms and then probe into the relationship between them. The results show that there are close relationships between LiP- and/or MnP-secretory capacities and the cultivation periods of mushrooms. The strains with high LiP and MnP activities have short cultivation periods. However, those strains have long cultivation periods because of the low levels of secreted LiP and/or MnP, even no detectable LiP and/or MnP activity. This study provides the first evidence on the imitate relation between the level of secreted LiP and MnP activities and cultivation periods of mushrooms with non-laccase activity. Our study has significantly increased the understanding of the role of LiP and MnP in the growth and development of mushrooms with non-laccase activity.  相似文献   

4.
T. Vares  M. Kalsi    A. Hatakka 《Applied microbiology》1995,61(10):3515-3520
The white rot fungus Phlebia radiata 79 (ATCC 64658) produces lignin peroxidase (LiP), manganese peroxidase (MnP), glyoxal oxidase (GLOX), and laccase in the commonly used glucose low-nitrogen liquid medium. However, the enzymes which this fungus utilizes for selective removal of lignin during degradation of different lignocellulosic substrates have not been studied before. Multiple forms of LiP, MnP, GLOX, and laccase were purified from P. radiata culture extracts obtained after solid-state fermentation of wheat straw. However, the patterns of extracellular lignin-modifying enzymes studied were different from those of the enzymes usually found in liquid cultures of P. radiata. Three LiP isoforms were purified. The major LiP isoform from solid-state cultivation was LiP2. LiP3, which has usually been described as the major isoenzyme in liquid cultures, was not expressed during straw fermentation. New MnP isoforms have been detected in addition to the previously reported MnPs. GLOX was secreted in rather high amounts simultaneously with LiP during the first 2 weeks of growth. GLOX purified from P. radiata showed multiple forms, with pIs ranging from 4.0 to 4.6 and with a molecular mass of ca. 68 kDa.  相似文献   

5.
通过诱变得到十一株木素过氧化物酶酶活降低的黄孢原毛平革菌(Phanerochaetechrysosporium)突变株,用灰色理论分析了其木素过氧化物酶类的产生与木素降解能力间的相关性,并从中筛选到一株木素过氧化物酶缺陷、锰过氧化物酶酶活明显降低的突变株,其木素降解能力为原始菌株的80%左右。该菌粗酶液作用于纤维素酶酶解杉木木素和天然褐腐木素,可产生小分子的木素降解产物,此反应不需H2O2参与。红外光谱分析表明粗酶液对木素的作用主要为氧化作用,因此推测此突变株粗酶液中含有不同于木素过氧化物酶和锰过氧化物酶的与木素氧化降解有关的酶类  相似文献   

6.
Manganese peroxidase (MnP) and lignin peroxidase (LiP) were produced by growing a white-rot fungusBjerkandera adusta statically, on a wood meal/wheat bran culture in flasks. MnP and LiP reached their maximum activity after 6 and 19 days of inoculation, respectively. Both MnP and LiP are thought to be important enzymes in lignin biodegradation byB. adusta. Ion exchange chromatography showed thatB. adusta produced a single LiP and a single MnP enzyme in wood meal/wheat bran culture. These enzymes were separated and characterized. The molecular weight of MnP was 46,500 with a pl of 3.9. The molecular weight of LiP was estimated to be 47,000 with a pl of 3.5. Spectral analysis demonstrated that both enzymes are heme proteins. Production of these enzymes was also achieved using a rotarysolid culture fermenter. MnP, LiP and veratryl alcohol oxidase were produced byB. adusta in the fermenter.  相似文献   

7.
张芳芳  张桐  戴丹  张振豪  张波  李玉 《菌物学报》2021,40(7):1869-1880
本研究利用愈创木酚和苯胺蓝固体培养基对菌株进行初筛,利用形态学和分子生物学对筛选出的菌株进行鉴定,以黄孢原毛平革菌Phanerochaete chrysosporium CGMCC 5.0776为对照,利用其对玉米秸秆进行预处理并测定木质素和纤维素的降解率,测定筛选菌株在预处理玉米秸秆过程中漆酶、锰过氧化物酶(manganese peroxidase,MnP)和木质素过氧化物酶(lignin peroxidase,LiP)活性。结果表明:利用愈创木酚和苯胺蓝固体培养基,从16株白腐真菌菌株中筛选出2株具有较高漆酶或MnP活性的菌株,鉴定其为桦栓孔菌Trametes betulina (L.) Pilát(ZT-153)和亚黑管孔菌Bjerkandera fumosa (Pers.) P. Karst.(ZT-307),测定T. betulina ZT-153和B. fumosa ZT-307对玉米秸秆酸不溶木质素降解效率分别为13.60%和21.87%,较对照P. chrysosporium CGMCC 5.0776高1.58%和9.85%,对纤维素的降解率较低,分别为4.10%和4.50%。2株菌株在预处理玉米秸秆过程中,T. betulina ZT-153表现出漆酶和MnP活性,B. fumosa ZT-307只表现出LiP活性。其中B. fumosa ZT-307对玉米秸秆酸不溶木质素的降解效率最高,在秸秆资源的综合利用方面具有较好的潜力和应用前景。  相似文献   

8.
 The effects of high manganese [180 μM Mn(II)] concentration and addition of malonate (10 mM) were studied in nitrogen-limited cultures of the white-rot fungus, Phlebia radiata. High levels of manganese alone showed no systematic influence on the production of lignin peroxidase (LiP), manganese peroxidase (MnP) or laccase. In contrast, high-manganese containing cultures of P. radiata showed lower efficiency in the mineralization of 14C-ring-labelled synthetic lignin ([14C]DHP). The highest rates of mineralization, up to 30% in 18 days, were reached in low- manganese(2 μM)-containing cultures when malonate was omitted. Degradation of [14C]DHP was substantially restricted by the addition of malonate. The combination of high manganese and malonate resulted in increased levels of MnP and laccase production, whereas LiP production was repressed. Also, the profiles of expression of the MnP and LiP isozymes were affected. A new P. radiata MnP isozyme of pI 3.6 (MnP3) was found in the high-manganese cultures. Addition of malonate alone caused some repression but also stimulating effects on distinctive MnP and LiP isozymes. The results indicate that manganese and malonate are individual regulators of MnP and LiP expression and have different roles in the degradation of lignin by P. radiata. Received: 30 August 1995/Received revision: 10 January 1996/Accepted: 12 February 1996  相似文献   

9.
Isothermal titration calorimetry (ITC) was developed for measuring lignin peroxidase (LiP) and manganese peroxidase (MnP) activities of versatile peroxidase (VP) from Bjerkandera adusta. Developing an ITC approach provided an alternative to colorimetric methods that enabled reaction kinetics to be accurately determined. Although VP from Bjerkandera adjusta is a hybrid enzyme, specific conditions of [Mn+2] and pH were defined that limited activity to either LiP or MnP activities, or enabled both to be active simultaneously. MnP activity was found to be more efficient than LiP activity, with activity increasing with increasing concentrations of Mn+2. These properties of MnP were explained by a second metal binding site involved in homotropic substrate (Mn+2) activation. The activation of MnP was also accompanied by a decrease in both activation energy and substrate (Mn) affinity, reflecting a flexible enzyme structure. In contrast to MnP activity, LiP activity was inhibited by high dye (substrate) concentrations arising from uncompetitive substrate inhibition caused by substrate binding to a site distinct from the catalytic site. Our study provides a new level of understanding about the mechanism of substrate regulation of catalysis in VP from B. adjusta, providing insight into a class of enzyme, hybrid class II peroxidases, for which little experimental data is available.  相似文献   

10.
李思  程伟  张富美  尚晓静  侯瑞 《菌物学报》2021,40(6):1511-1524
利用组织分离从未成熟有机蓝莓的表皮中分离出菌株G14,根据其菌落形态、ITS序列对比及系统发育树的分析,鉴定菌株G14为一株烟管孔菌Bjerkandera adusta.菌株G14可以分泌漆酶(laccase,Lac)、木质素过氧化物酶(lignin peroxidase,LiP)和锰过氧化物酶(manganese p...  相似文献   

11.
Chen M  Zeng G  Tan Z  Jiang M  Li H  Liu L  Zhu Y  Yu Z  Wei Z  Liu Y  Xie G 《PloS one》2011,6(9):e25647
Previous works have demonstrated that ligninolytic enzymes mediated effective degradation of lignin wastes. The degrading ability greatly relied on the interactions of ligninolytic enzymes with lignin. Ligninolytic enzymes mainly contain laccase (Lac), lignin peroxidase (LiP) and manganese peroxidase (MnP). In the present study, the binding modes of lignin to Lac, LiP and MnP were systematically determined, respectively. Robustness of these modes was further verified by molecular dynamics (MD) simulations. Residues GLU460, PRO346 and SER113 in Lac, residues ARG43, ALA180 and ASP183 in LiP and residues ARG42, HIS173 and ARG177 in MnP were most crucial in binding of lignin, respectively. Interactional analyses showed hydrophobic contacts were most abundant, playing an important role in the determination of substrate specificity. This information is an important contribution to the details of enzyme-catalyzed reactions in the process of lignin biodegradation, which can be used as references for designing enzyme mutants with a better lignin-degrading activity.  相似文献   

12.
Recently, Mn(II) has been shown to induce manganese peroxidases (MnPs) and repress lignin peroxidases (LiPs) in defined liquid cultures of several white rot organisms. The present work shows that laccase is also regulated by Mn(II). We therefore used Mn(II) to regulate production of LiP, MnP, and laccase activities while determining the effects of Mn(II) on mineralization of ring-labeled synthetic lignin. At a low Mn(II) level, Phanerochaete chrysosporium and Phlebia brevispora produced relatively high titers of LiPs but only low titers of MnPs. At a high Mn(II) level, MnP titers increased 12- to 20-fold, but LiPs were not detected in crude broths. P. brevispora formed much less LiP than P. chrysosporium, but it also produced laccase activity that increased more than sevenfold at the high Mn(II) level. The rates of synthetic lignin mineralization by these organisms were similar and were almost seven times higher at low than at high Mn(II). Increased synthetic lignin mineralization therefore correlated with increased LiP, not with increased MnP or laccase activities.  相似文献   

13.
Production of the oxidoreductive lignin-modifying enzymes – lignin and manganese peroxidases (MnPs), and laccase – of the white-rot basidiomycete Phlebia radiata was investigated in semi-solid cultures supplemented with milled grey alder or Norway spruce and charcoal. Concentrations of nutrient nitrogen and Cu-supplement varied also in the cultures. According to extracellular activities, production of both lignin peroxidase (LiP) and MnP was significantly promoted with wood as carbon source, with milled alder (MA) and low nitrogen (LN) resulting with the maximal LiP activities (550 nkat l−1) and noticeable levels of MnP (3 μkat l−1). Activities of LiP and MnP were also elevated on high nitrogen (HN) complex medium when supplemented with spruce and charcoal. Maximal laccase activities (22 and 29 μkat l−1) were obtained in extra high nitrogen (eHN) containing defined and complex media supplemented with 1.5 mM Cu2+. However, the nitrogen source, either peptone or ammonium nitrate and asparagine, caused no stimulation on laccase production without Cu-supplement. This is also the first report to demonstrate a new, on high Cu2+ amended medium produced extracellular laccase of P. radiata with pI value of 4.9, thereby complementing our previous findings on gene expression, and cloning of a second laccase of this fungus.  相似文献   

14.
In the used media mainly consisting of steam-exploded wheat straw, the straw, which could replace expensive veratryl alcohol, might act not only as nutrient, but also as inducer of lignin enzymes. The activities of the enzymes lignin peroxidase (LiP) and manganese peroxidase (MnP) in solid-state fermentation (SSF) were far higher than in submerged fermentation (SmF). Under optimal conditions of SSF, the maximum activities of the enzymes Lip and MnP were 2600 and 1375 U/L, respectively. Thus, this would pave the way for production and application of lignin enzymes on a large scale.  相似文献   

15.
Pleurotus sajor-caju, strain Pl-27, produces manganese-dependent peroxidase (MnP) and laccase, but not lignin peroxidase, when grown on a defined medium with glucose as sole carbon source. MnP activity was detected in fungal cultures supplemented with both high (26 mM-N) and low (2.6 mM-N) nutrient nitrogen although higher specific activity values were recorded under the latter conditions. Conversely, laccase production was not influenced by nutrient nitrogen levels under the growth conditions adopted. Both the titre and time of appearence of MnP were also affected by the concentration of Mn in the culture medium with highest enzyme levels recorded in cultures supplemented with 15 ppm Mn. Two MnP and five laccase isoforms were identified by FPLC and gel electrophoresis.  相似文献   

16.
培养于麦草粉上的白腐担子菌粗毛栓菌分泌胞外木质纤维素降解酶(纤维素酶、木聚糖酶、漆酶、锰过氧化物酶和木质素过氧化物酶)。经过超滤、盐析、离子交换层析、凝胶过滤和活性聚丙烯酰胺凝胶电泳等步骤,获得了初步纯化的锰过氧化物酶组分。利用变性聚丙烯酰胺凝胶电泳和等电点聚焦技术所测定的锰过氧化物酶的相对分子质量和等电点分别为35.7 ku和pI 2.8。研究结果表明,所纯化的锰过氧化物酶在407nm处具有最大光吸收峰,该酶最适作用pH值和温度分别为pH 5.3和35℃。  相似文献   

17.
Recently, Mn(II) has been shown to induce manganese peroxidases (MnPs) and repress lignin peroxidases (LiPs) in defined liquid cultures of several white rot organisms. The present work shows that laccase is also regulated by Mn(II). We therefore used Mn(II) to regulate production of LiP, MnP, and laccase activities while determining the effects of Mn(II) on mineralization of ring-labeled synthetic lignin. At a low Mn(II) level, Phanerochaete chrysosporium and Phlebia brevispora produced relatively high titers of LiPs but only low titers of MnPs. At a high Mn(II) level, MnP titers increased 12- to 20-fold, but LiPs were not detected in crude broths. P. brevispora formed much less LiP than P. chrysosporium, but it also produced laccase activity that increased more than sevenfold at the high Mn(II) level. The rates of synthetic lignin mineralization by these organisms were similar and were almost seven times higher at low than at high Mn(II). Increased synthetic lignin mineralization therefore correlated with increased LiP, not with increased MnP or laccase activities.  相似文献   

18.
The white rot fungus Trametes trogii strain BAFC 463 produced laccase, manganese peroxidase, lignin peroxidase and cellobiose dehydrogenase, as well as two hydrogen peroxide‐producing activities: glucose oxidizing activity and glyoxal oxidase. In high‐N (40 mM N) cultures, the titres of laccase, MnP and GLOX were 27 (6.55 U/ml), 45 (403.00 mU/ml)and 8 (32,14 mU/ml) fold higher, respectively, than those measured in an N‐limited medium. This is consistent with the fact that the ligninolytic system of T. trogii is expressed constitutively. Lower activities of all the enzymes tested were recorded upon decreasing the initial pH of the medium from 6.5 to 4.5. Adding veratryl alcohol improved GLOX production, while laccase activity was stimulated by tryptophan. Supplying Tween 80 strongly reduced the activity of both MnP and GLOX, but increased laccase production. The titre of MnP was affected by the concentration of Mn in the culture medium, the highest levels were obtained with 90 μM Mn (II). LiP activity, as CDH activity, were detected only in the mediumsupplemented with sawdust. In this medium, laccase production reached a maximum of 4.75 U/ml, MnP 747.60 mU/ml and GLOX 117.11 mU/ml. LiP, MnP and GLOX activities were co‐induced, attaining their highest levels at the beginning of secondary metabolism, but while MnP, laccase, GLOX and CDH activities were also present in the primary growth phase, LiP activity appears to beidiophasic. The simultaneous presence of high ligninolytic and hydrogen peroxide producing activities in this fungus makes it an attractive microorganism for future biotechnological applications.  相似文献   

19.
Lignin-modifying enzymes of the white rot basidiomycete Ganoderma lucidum   总被引:2,自引:0,他引:2  
Ganoderma lucidum, a white rot basidiomycete widely distributed worldwide, was studied for the production of the lignin-modifying enzymes laccase, manganese-dependent peroxidase (MnP), and lignin peroxidase (LiP). Laccase levels observed in high-nitrogen (HN; 24 mM N) shaken cultures were much greater than those seen in low-nitrogen (2.4 mM N), malt extract, or wood-grown cultures and those reported for most other white rot fungi to date. Laccase production was readily seen in cultures grown with pine or poplar (100-mesh-size ground wood) as the sole carbon and energy source. Cultures containing both pine and poplar showed 5- to 10-fold-higher levels of laccase than cultures containing pine or poplar alone. Since syringyl units are structural components important in poplar lignin and other hardwoods but much less so in pine lignin and other softwoods, pine cultures were supplemented with syringic acid, and this resulted in laccase levels comparable to those seen in pine-plus-poplar cultures. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of concentrated extracellular culture fluid from HN cultures showed two laccase activity bands (M(r) of 40,000 and 66, 000), whereas isoelectric focusing revealed five major laccase activity bands with estimated pIs of 3.0, 4.25, 4.5, 4.8, and 5.1. Low levels of MnP activity ( approximately 100 U/liter) were detected in poplar-grown cultures but not in cultures grown with pine, with pine plus syringic acid, or in HN medium. No LiP activity was seen in any of the media tested; however, probing the genomic DNA with the LiP cDNA (CLG4) from the white rot fungus Phanerochaete chrysosporium showed distinct hybridization bands suggesting the presence of lip-like sequences in G. lucidum.  相似文献   

20.
Extracellular lignin peroxidase (LiP) was not detected during decoloration of the azo dye, Amaranth, by Trametes versicolor. Approximately twice as much laccase and manganese peroxidase (MnP) was produced by decolorizing cultures compared to when no dye was added. At a low Mn2+ concentration (3 M), N-limited (1.2 mM NH4 +) cultures decolorized eight successive additions of Amaranth with no visible sorption to the mycelial biomass. At higher Mn2+ concentrations (200 M), production of MnP increased and that of laccase decreased, but the rate or number of successive Amaranth decolorations was unaffected. There was always a 6-h to 8-h lag prior to decoloration of the first aliquot of Amaranth, regardless of MnP and laccase concentrations. Although nitrogen-rich (12 mM NH4 +) cultures at an initial concentration of 200 M Mn2+ produced high laccase and MnP levels, only three additions of Amaranth were decolorized, and substantial mycelial sorption of the dye occurred. While the results did not preclude roles for MnP and laccase, extracellular MnP and laccase alone were insufficient for decoloration. The cell-free supernatant did not decolorize Amaranth, but the mycelial biomass separated from the whole broth and resuspended in fresh medium did. This indicates the involvement of a mycelial-bound, lignolytic enzyme or a H2O2-generating mechanism in the cell wall. Nitrogen limitation was required for the expression of this activity. Received: 19 May 1998 / Received revision: 22 October 1998 / Accepted: 7 November 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号