首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
A thermodynamic model describing formation of α-helices by peptides and proteins in the absence of specific tertiary interactions has been developed. The model combines free energy terms defining α-helix stability in aqueous solution and terms describing immersion of every helix or fragment of coil into a micelle or a nonpolar droplet created by the rest of protein to calculate averaged or lowest energy partitioning of the peptide chain into helical and coil fragments. The α-helix energy in water was calculated with parameters derived from peptide substitution and protein engineering data and using estimates of nonpolar contact areas between side chains. The energy of nonspecific hydrophobic interactions was estimated considering each α-helix or fragment of coil as freely floating in the spherical micelle or droplet, and using water/cyclohexane (for micelles) or adjustable (for proteins) side-chain transfer energies. The model was verified for 96 and 36 peptides studied by 1H-nmr spectroscopy in aqueous solution and in the presence of micelles, respectively ([set I] and [set 2]) and for 30 mostly α-helical globular proteins ([set 3]). For peptides, the experimental helix locations were identified from the published medium-range nuclear Overhauser effects detected by 1H-nmr spectroscopy. For sets 1, 2, and 3, respectively, 93, 100, and 97% of helices were identified with average errors in calculation of helix boundaries of 1.3, 2.0, and 4.1 residues per helix and an average percentage of correctly calculated helix—coil states of 93, 89, and 81%, respectively. Analysis of adjustable parameters of the model (the entropy and enthalpy of the helix—coil transition, the transfer energy of the helix backbone, and parameters of the bound coil), determined by minimization of the average helix boundary deviation for each set of peptides or proteins, demonstrates that, unlike micelles, the interior of the effective protein droplet has solubility characteristics different from that for cyclohexane, does not bind fragments of coil, and lacks interfacial area. © 1997 John Wiley & Sons, Inc. Biopoly 42: 239–269, 1997  相似文献   

2.
The methods suggested earlier for the analysis and representation of protein structural data are now extended to the helical regions in finer details. These enable better handling of characterization of bends and distortions, for which statistical parameters are also developed. Using latest myoglobin data, best experimental parameters for the α-helix are deduced to be rN = 1.55 (0.13) Å, r = 2.28 (0.12) Å, rC′ = 1.70 (0.10) Å, r0 = 2.02 (0.12) Å, ? = 100.5 (2.3)°, and t = 1.495 (0.055) Å.  相似文献   

3.
An analysis of the amino acid distributions at 15 positions, viz., N“, N′, Ncap, N1, N2, N3, N4, Mid, C4, C3, C2, C1, Ccap, C′, and C” in 1,131 α-helices reveals that each position has its own unique characteristics. In general, natural helix sequences optimize by identifying the residues to be avoided at a given position and minimizing the occurrence of these avoided residues rather than by maximizing the preferred residues at various positions. Ncap is most selective in its choice of residues, with six amino acids (S, D, T, N, G, and P) being preferred at this position and another 11 (V, I, F, A, K, L, Y, R, E, M, and Q) being strongly avoided. Ser, Asp, and Thr are all more preferred at Ncap position than Asn, whose role at helix N-terminus has been highlighted by earlier analyses. Furthermore, Asn is also found to be almost equally preferred at helix C-terminus and a novel structural motif is identified, involving a hydrogen bond formed by Nδ2 of Asn at Ccap or C1 position, with the backbone carbonyl oxygen four residues inside the helix. His also forms a similar motif at the C-terminus. Pro is the most avoided residue in the main body (N4 to C4 positions) and at C-ter-minus, including Ccap of an α-helix. In 1,131 α-helices, no helix contains Pro at C3 or C2 positions. However, Pro is highly favoured at N1 and C′. The doublet X-Pro, with Pro at C′ position and extended backbone conformation for the X residue at Ccap, appears to be a common structural motif for termination of α-helices, in addition to the Schellman motif. Main body of the helix shows a high preference for aliphatic residues Ala, Leu, Val, and Ile, while these are avoided at helix termini. A propensity scale for amino acids to occur in the middle of helices has been obtained. Comparison of this scale with several previously reported scales shows that this scale correlates best with the experimentally determined values. Proteins 31:460–476, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
The evolution of protein folds is under strong constraints from their surrounding environment. Although folding in water‐soluble proteins is driven primarily by hydrophobic forces, the nature of the forces that determine the folding and stability of transmembrane proteins are still not fully understood. Furthermore, the chemically heterogeneous lipid bilayer has a non‐uniform effect on protein structure. In this article, we attempt to get an insight into the nature of this effect by examining the impact of various types of local structure environment on amino acid substitution, based on alignments of high‐resolution structures of polytopic helical transmembrane proteins combined with sequences of close homologs. Compared to globular proteins, burying amino acid sidechains, especially hydrophilic ones, led to a lower increase in conservation in both the lipid‐water interface region and the hydrocarbon core region. This observation is due to surface residues in HTM proteins especially in the HC region being relatively highly conserved, suggesting higher evolutionary constraints from their specific interactions with the surrounding lipid molecules. Polar and small residues, particularly Pro and Gly, show a noticeable increase in conservation as they are positioned more towards the centre of the membrane, which is consistent with their recognized key roles in structural stability. In addition, the examination of hydrogen bonds in the membrane environment identified some exposed hydrophilic residues being better conserved when not hydrogen‐bonded to other residues, supporting the importance of lipid‐protein sidechain interactions. The conclusions presented in this study highlight the distinct features of substitution matrices that take into account the membrane environment, and their potential role in improving sequence‐structure alignments of transmembrane proteins. Proteins 2010; © 2010 Wiley‐Liss, Inc.  相似文献   

5.
We present a fully automatic structural classification of supersecondary structure units, consisting of two hydrogen-bonded β strands, preceded or followed by an α helix. The classification is performed on the spatial arrangement of the secondary structure elements, irrespective of the length and conformation of the intervening loops. The similarity of the arrangements is estimated by a structure alignment procedure that uses as similarity measure the root mean square deviation of superimposed backbone atoms. Applied to a set of 141 well-resolved nonhomologous protein structures, the classification yields 11 families of recurrent arrangements. In addition, fragments that are structurally intermediate between the families are found; they reveal the continuity of the classification. The analysis of the families shows that the α helix and β hairpin axes can adopt virtually all relative orientations, with, however, some preferable orientations; moreover, according to the orientation, preferences in the left/right handedness of the α–β connection are observed. These preferences can be explained by favorable side by side packing of the α helix and the β hairpin, local interactions in the region of the α–β connection or stabilizing environments in the parent protein. Furthermore, fold recognition procedures and structure prediction algorithms coupled to database-derived potentials suggest that the preferable nature of these arrangements does not imply their intrinsic stability. They usually accommodate a large number of sequences, of which only a subset is predicted to stabilize the motif. The motifs predicted as stable could correspond to nuclei formed at the very beginning of the folding process. Proteins 30:193–212, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
To investigate the cooperativity of insulin's structure, a cavity-forming substitution was introduced within the hydrophobic core of an engineered monomer. The substitution, Ile(A2)-->Ala in the A1-A8 alpha-helix, does not impair disulfide pairing between chains. In accord with past studies of cavity-forming mutations in globular proteins, a decrement was observed in thermodynamic stability (DeltaDeltaG(u) 0.4-1.2 kcal/mole). Unexpectedly, CD studies indicate an attenuated alpha-helix content, which is assigned by NMR spectroscopy to selective destabilization of the A1-A8 segment. The analog's solution structure is otherwise similar to that of native insulin, including the B chain's supersecondary structure and a major portion of the hydrophobic core. Our results show that (1) a cavity-forming mutation in a globular protein can lead to segmental unfolding, (2) tertiary packing of Ile(A2), a residue of low helical propensity, stabilizes the A1-A8 alpha-helix, and (3) folding of this segment is not required for native disulfide pairing or overall structure. We discuss these results in relation to a hierarchical pathway of protein folding and misfolding. The Ala(A2) analog's low biological activity (0.5% relative to the parent monomer) highlights the importance of the A1-A8 alpha-helix in receptor recognition.  相似文献   

7.
Integral membrane proteins (of the α-helical class) are of central importance in a wide variety of vital cellular functions. Despite considerable effort on methods to predict the location of the helices, little attention has been directed toward developing an automatic method to pack the helices together. In principle, the prediction of membrane proteins should be easier than the prediction of globular proteins: there is only one type of secondary structure and all helices pack with a common alignment across the membrane. This allows all possible structures to be represented on a simple lattice and exhaustively enumerated. Prediction success lies not in generating many possible folds but in recognizing which corresponds to the native. Our evaluation of each fold is based on how well the exposed surface predicted from a multiple sequence alignment fits its allocated position. Just as exposure to solvent in globular proteins can be predicted from sequence variation, so exposure to lipid can be recognized by variable-hydrophobic (variphobic) positions. Application to both bacteriorhodopsin and the eukaryotic rhodopsin/opsin families revealed that the angular size of the lipid-exposed faces must be predicted accurately to allow selection of the correct fold. With the inherent uncertainties in helix prediction and parameter choice, this accuracy could not be guaranteed but the correct fold was typically found in the top six candidates. Our method provides the first completely automatic method that can proceed from a scan of the protein sequence databanks to a predicted three-dimensional structure with no intervention required from the investigator. Within the limited domain of the seven helix bundle proteins, a good chance can be given of selecting the correct structure. However, the limited number of sequences available with a corresponding known structure makes further characterization of the method difficult. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
John Seo  Carolyn Cohen 《Proteins》1993,15(3):223-234
Two complementary methods for measuring local pitch based on heptad position in α-helical coiled coils are described and applied to six crystal structures. The results reveal a diversity of pitch values: two-stranded coiled coils appear to have pitch values near 150 Å the values for three- and four-stranded coiled coils range closer to 200 Å. The methods also provide a rapid and sensitive gauge of local coiled-coil conformation. Polar or charged residues in the apolar interface between coiled-coil helices markedly affect local pitch values, suggesting a connection between pitch uniformity and coiled-coil stability. Moreover, the identification of a skip residue (heptad frame shift) in the hemaglutinin glycoprotein of influenza virus (HA) allows interpretation of local pitch changes. These results on relatively short coiled-coil structures have relevance for the much longer fibrous proteins (many of which have skip residues) whose detailed structures are not yet established. We also show that local pitch values from molecular dynamics predictions of the GCN4 leucine zipper are in striking agreement with the high-resolution crystal structure—a result not readily discerned by direct comparison of atomic coordinates. Taken together, these methods reveal specific aspects of coiled-coil structure which may escape detection by global analyses of pitch. © 1993 Wiley-Liss, Inc.  相似文献   

9.
The discontinuities found in heptad repeats of α-helical coiled-coil proteins have been characterized. A survey of 40 α-fibrous proteins reveals that only two classes of heptad breaks are prevalent: the stutter, corresponding to a deletion of three residues, and the newly identified “stammer,” corresponding to a deletion of four residues. This restriction on the variety of insertions/deletions encountered gives support to a unifying structural model, where different degrees of supercoiling accommodate the observed breaks. Stutters in the hemagglutinin coiled-coil region have previously been shown to produce an underwinding of the supercoil, and we show here how, in other cases, stammers would lead to overwinding. An analysis of main-chain structure also indicates that the mannose-binding protein, as well as hemagglutinin, contains an underwound coiled-coil region. In contrast to knobs-into-holes packing, these models give rise to non-close-packed cores at the sites of the heptad phase shifts. We suggest that such non-close-packed cores may function to terminate certain coiled-coil regions, and may also account for the flexibility observed in such long α-fibrous molecules as myosin. The local underwinding or overwinding caused by these specific breaks in the heptad repeat has a global effect on the structure and can modify both the assembly of the protein and its interaction properties. © 1996 Wiley-Liss, Inc.  相似文献   

10.
11.
Folding type-specific secondary structure propensities of 20 naturally occurring amino acids have been derived from α-helical, β-sheet, α/β, and α+β proteins of known structures. These data show that each residue type of amino acids has intrinsic propensities in different regions of secondary structures for different folding types of proteins. Each of the folding types shows markedly different rank ordering, indicating folding type-specific effects on the secondary structure propensities of amino acids. Rigorous statistical tests have been made to validate the folding type-specific effects. It should be noted that α and β proteins have relatively small α-helices and β-strands forming propensities respectively compared with those of α+β and α/β proteins. This may suggest that, with more complex architectures than α and β proteins, α+β and α/β proteins require larger propensities to distinguish from interacting α-helices and β-strands. Our finding of folding type-specific secondary structure propensities suggests that sequence space accessible to each folding type may have differing features. Differing sequence space features might be constrained by topological requirement for each of the folding types. Almost all strong β-sheet forming residues are hydrophobic in character regardless of folding types, thus suggesting the hydrophobicities of side chains as a key determinant of β-sheet structures. In contrast, conformational entropy of side chains is a major determinant of the helical propensities of amino acids, although other interactions such as hydrophobicities and charged interactions cannot be neglected. These results will be helpful to protein design, class-based secondary structure prediction, and protein folding. © 1998 John Wiley & Sons, Inc. Biopoly 45: 35–49, 1998  相似文献   

12.
Rationale: The αvβ6- and αvβ8-integrins, two cell-adhesion receptors upregulated in many tumors and involved in the activation of the latency associated peptide (LAP)/TGFβ complex, represent potential targets for tumor imaging and therapy. We investigated the tumor-homing properties of a chromogranin A-derived peptide containing an RGDL motif followed by a chemically stapled alpha-helix (called “5a”), which selectively recognizes the LAP/TGFβ complex-binding site of αvβ6 and αvβ8.Methods: Peptide 5a was labeled with IRDye 800CW (a near-infrared fluorescent dye) or with 18F-NOTA (a label for positron emission tomography (PET)); the integrin-binding properties of free peptide and conjugates were then investigated using purified αvβ6/αvβ8 integrins and various αvβ6/αvβ8 single - or double-positive cancer cells; tumor-homing, biodistribution and imaging properties of the conjugates were investigated in subcutaneous and orthotopic αvβ6-positive carcinomas of the pancreas, and in mice bearing subcutaneous αvβ8-positive prostate tumors.Results: In vitro studies showed that 5a can bind both integrins with high affinity and inhibits cell-mediated TGFβ activation. The 5a-IRDye and 5a-NOTA conjugates could bind purified αvβ6/αvβ8 integrins with no loss of affinity compared to free peptide, and selectively recognized various αvβ6/αvβ8 single- or double-positive cancer cells, including cells from pancreatic carcinoma, melanoma, oral mucosa, bladder and prostate cancer. In vivo static and dynamic optical near-infrared and PET/CT imaging and biodistribution studies, performed in mice with subcutaneous and orthotopic αvβ6-positive carcinomas of the pancreas, showed high target-specific uptake of fluorescence- and radio-labeled peptide by tumors and low non-specific uptake in other organs and tissues, except for excretory organs. Significant target-specific uptake of fluorescence-labeled peptide was also observed in mice bearing αvβ8-positive prostate tumors.Conclusions: The results indicate that 5a can home to αvβ6- and/or αvβ8-positive tumors, suggesting that this peptide can be exploited as a ligand for delivering imaging or anticancer agents to αvβ6/αvβ8 single- or double-positive tumors, or as a tumor-homing inhibitor of these TGFβ activators.  相似文献   

13.
The interaction of the α5β1 integrin and its ligand, fibronectin (FN), plays a crucial role in the adhesion of cells to the extracellular matrix. An important intrinsic property of the α5β1/FN interaction is the dynamic response of the complex to a pulling force. We have carried out atomic force microscopy measurements of the interaction between α5β1 and a fibronectin fragment derived from the seventh through tenth type III repeats of FN (i.e., FN7-10) containing both the arg-gly-asp (RGD) sequence and the synergy site. Direct force measurements obtained from an experimental system consisting of an α5β1 expressing K562 cell attached to the atomic force microscopy cantilever and FN7-10 adsorbed on a substrate were used to determine the dynamic response of the α5β1/FN7-10 complex to a pulling force. The experiments were carried out over a three-orders-of-magnitude change in loading rate and under conditions that allowed for detection of individual α5β1/FN7-10 interactions. The dynamic rupture force of the α5β1/FN7-10 complex revealed two regimes of loading: a fast loading regime (>10,000 pN/s) and a slow loading regime (<10,000 pN/s) that characterize the inner and outer activation barriers of the complex, respectively. Activation by TS2/16 antibody increased both the frequency of adhesion and elevated the rupture force of the α5β1/wild type FN7-10 complex to higher values in the slow loading regime. In experiments carried out with a FN7-10 RGD deleted mutant, the force measurements revealed that both inner and outer activation barriers were suppressed by the mutation. Mutations to the synergy site of FN, however, suppressed only the outer barrier activation of the complex. For both the RGD and synergy deletions, the frequency of adhesion was less than that of the wild type FN7-10, but was increased by integrin activation. The rupture force of these mutants was only slightly less than that of the wild type, and was not increased by activation. These results suggest that integrin activation involved a cooperative interaction with both the RGD and synergy sites.  相似文献   

14.
Comparison of multiple protein structures has a broad range of applications in the analysis of protein structure, function and evolution. Multiple structure alignment tools (MSTAs) are necessary to obtain a simultaneous comparison of a family of related folds. In this study, we have developed a method for multiple structure comparison largely based on sequence alignment techniques. A widely used Structural Alphabet named Protein Blocks (PBs) was used to transform the information on 3D protein backbone conformation as a 1D sequence string. A progressive alignment strategy similar to CLUSTALW was adopted for multiple PB sequence alignment (mulPBA). Highly similar stretches identified by the pairwise alignments are given higher weights during the alignment. The residue equivalences from PB based alignments are used to obtain a three dimensional fit of the structures followed by an iterative refinement of the structural superposition. Systematic comparisons using benchmark datasets of MSTAs underlines that the alignment quality is better than MULTIPROT, MUSTANG and the alignments in HOMSTRAD, in more than 85% of the cases. Comparison with other rigid-body and flexible MSTAs also indicate that mulPBA alignments are superior to most of the rigid-body MSTAs and highly comparable to the flexible alignment methods.  相似文献   

15.
Recent studies revealed that molecular events related with the physiology and pathology of αS might be regulated by specific sequence motifs in the primary sequence of αS. The importance of individual residues in these motifs remains an important open avenue of investigation. In this work, we have addressed the structural details related to the amyloid fibril assembly and lipid‐binding features of αS through the design of site‐directed mutants at position 39 of the protein and their study by in vitro and in vivo assays. We demonstrated that aromaticity at position 39 of αS primary sequence influences strongly the aggregation properties and the membrane‐bound conformations of the protein, molecular features that might have important repercussions for the function and dysfunction of αS. Considering that aggregation and membrane damage is an important driver of cellular toxicity in amyloid diseases, future work is needed to link our findings with studies based on toxicity and neuronal cell death.Brief statement outlining significanceModulation by distinct sequential motifs and specific residues of αS on its physiological and pathological states is an active area of research. Here, we demonstrated that aromaticity at position 39 of αS modulates the membrane‐bound conformations of the protein, whereas removal of aromatic functionality at position 39 reduces strongly the amyloid assembly in vitro and in vivo. Our study provides new evidence for the modulation of molecular events related with the physiology and pathology of αS.  相似文献   

16.
Membrane proteins play key roles in cellular signaling and transport, represent the majority of drug targets, and are implicated in many diseases. Their relevance renders them important subjects for structural, biophysical, and functional investigations. However, obtaining membrane proteins in high purities is often challenging with conventional purification steps alone. To address this issue, we present here an approach to increase the purity of α‐helical transmembrane proteins. Our approach exploits the Thioredoxin (Trx) tag system, which is able to confer some of its favorable properties, such as high solubility and thermostability, to its fusion partners. Using Trx fusions of transmembrane helical hairpin constructs derived from the human cystic fibrosis transmembrane conductance regulator (CFTR) and a bacterial ATP synthase, we establish conditions for the successful implementation of the selective heat treatment procedure to increase sample purity. We further examine systematically its efficacy with respect to different incubation times and temperatures using quantitative gel electrophoresis. We find that minute‐timescale heat treatment of Trx‐tagged fusion constructs with temperatures ranging from 50 to 90°C increases the purity of the membrane protein samples from ~60 to 98% even after affinity purification. We show that this single‐step approach is even applicable in cases where regular selective heat purification from crude extracts, as reported for Trx fusions to soluble proteins, fails. Overall, our approach is easy to integrate into existing purification strategies and provides a facile route for increasing the purity of membrane protein constructs after purification by standard chromatography approaches.  相似文献   

17.
The distribution of surface tension within a lipid bilayer, also referred to as the lateral pressure profile, has been the subject of theoretical scrutiny recently due to its potential to radically alter the function of biomedically important membrane proteins. Experimental measurements of the pressure profile are still hard to come by, leaving first-principles all-atom calculations of the profile as an important investigative tool. We describe and validate an efficient implementation of pressure profile calculations in the molecular dynamics package NAMD, capable of distinguishing between internal, bonded and nonbonded contributions as well as those of selected atom groups. The new implementation can also be used in conjunction with Ewald summation for long-range electrostatics, improving the accuracy and reproducibility of the calculated profiles. We then describe results of the calculation of a pressure profile for a simple protein–lipid system consisting of melittin embedded in a DMPC bilayer. While the lateral pressure in the protein–lipid system is nearly the same as that of the bilayer alone, partitioning of the lateral pressure by atom type revealed substantial perturbation of the pressure profile and surface tension in an asymmetric manner.  相似文献   

18.
19.
The design and synthesis of a water-soluble 14-residue peptide, in which a quinoline intercalator is attached to the peptide backbone via alkylation of a central cysteine residue, is reported. 600 MHz 1H NMR spectroscopy and circular dichroism indicate that the peptide forms a nascent helix in aqueous solution, ie. an ensemble of turn-like structures over several adjacent residues in the peptide. A large number of sequential dNN(i, i+1) connectivities were observed in NOESY spectra, and titration of trifluoroethanol into a solution of the peptide resulted in the characteristic CD spectrum expected for an α-helix. At low DNA concentrations, CD spectroscopy indicates that this helical conformation is stabilized, presumably due to folding of the peptide in the major groove of DNA.  相似文献   

20.
Protein phosphatase-1 (PP-1) is involved in the regulation of numerous metabolic processes in mammalian cells. The major isoforms of PP-1, α, γ1, and δ, have nearly identical catalytic domains, but they vary in sequence at their extreme NH2 and COOH termini. With specific antibodies raised against the unique COOH-terminal sequence of each isoform, we find that the three PP-1 isoforms are each expressed in all mammalian cells tested, but that they localize within these cells in a strikingly distinct and characteristic manner. Each isoform is present both within the cytoplasm and in the nucleus during interphase. Within the nucleus, PP-1 α associates with the nuclear matrix, PP-1 γ1 concentrates in nucleoli in association with RNA, and PP-1 δ localizes to nonnucleolar whole chromatin. During mitosis, PP-1 α is localized to the centrosome, PP-1 γ1 is associated with microtubules of the mitotic spindle, and PP-1 δ strongly associates with chromosomes. We conclude that PP-1 isoforms are targeted to strikingly distinct and independent sites in the cell, permitting unique and independent roles for each of the isoforms in regulating discrete cellular processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号