首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alpha-lipoic acid (alpha-LA) mimics the hypothalamic actions of leptin on food intake, energy expenditure, and activation of AMP-activated protein kinase (AMPK). To determine if, like leptin, alpha-LA protects against cardiac lipotoxicity, alpha-LA was fed to transgenic mice with cardiomyocyte-specific overexpression of the acyl CoA synthase (ACS) gene. Untreated ACS-transgenic mice died prematurely with increased triacylglycerol content and dilated cardiomyopathy, impaired systolic function and myofiber disorganization, apoptosis, and interstitial fibrosis on microscopy. In alpha-LA-treated ACS-transgenic mice heart size, echocardiogram and TG content were normal. Plasma TG fell 50%, hepatic-activated phospho-AMPK rose 6-fold, sterol regulatory element-binding protein-1c declined 50%, and peroxisome proliferator-activated receptor-gamma cofactor-1alpha mRNA rose 4-fold. Since food restriction did not prevent lipotoxicity, we conclude that alpha-LA treatment, like hyperleptinemia, protects the heart of ACS-transgenic mice from lipotoxicity.  相似文献   

2.
Adiponectin has been shown to stimulate fatty acid oxidation and enhance insulin sensitivity through the activation of AMP-activated protein kinase (AMPK) in the peripheral tissues. The effects of adiponectin in the central nervous system, however, are still poorly understood. Here, we show that adiponectin enhances AMPK activity in the arcuate hypothalamus (ARH) via its receptor AdipoR1 to stimulate food intake; this stimulation of food intake by adiponectin was attenuated by dominant-negative AMPK expression in the ARH. Moreover, adiponectin also decreased energy expenditure. Adiponectin-deficient mice showed decreased AMPK phosphorylation in the ARH, decreased food intake, and increased energy expenditure, exhibiting resistance to high-fat-diet-induced obesity. Serum and cerebrospinal fluid levels of adiponectin and expression of AdipoR1 in the ARH were increased during fasting and decreased after refeeding. We conclude that adiponectin stimulates food intake and decreases energy expenditure during fasting through its effects in the central nervous system.  相似文献   

3.
Vasoactive intestinal peptide (VIP) is a 28 amino acid peptide expressed throughout the peripheral and central nervous systems. VIP and the VIP receptor VPAC(2)R are expressed in hypothalamic nuclei involved in the regulation of energy homeostasis. VIP has been shown to be involved in the regulation of energy balance in a number of non-mammalian vertebrates. We therefore examined the effects of intracerebroventricular (ICV) administration of VIP on food intake, energy expenditure and activity in adult male Wistar rats. VIP administration caused a potent short lived decrease in food intake and an increase in activity and energy expenditure. The pathways potentially involved in the anorexigenic effects of VIP were investigated by measuring the release of neuropeptides involved in the regulation of food intake from hypothalamic explants treated with VIP. VIP significantly stimulated the release of the anorexigenic peptide alpha-melanocyte stimulating hormone (αMSH). These studies suggest that VIP may have an endogenous role in the hypothalamic control of energy homeostasis.  相似文献   

4.
AMP-activated protein kinase plays a role in the control of food intake   总被引:32,自引:0,他引:32  
AMP-activated protein kinase (AMPK) is the downstream component of a protein kinase cascade that acts as an intracellular energy sensor maintaining the energy balance within the cell. The finding that leptin and adiponectin activate AMPK to alter metabolic pathways in muscle and liver provides direct evidence for this role in peripheral tissues. The hypothalamus is a key regulator of food intake and energy balance, coordinating body adiposity and nutritional state in response to peripheral hormones, such as leptin, peptide YY-(3-36), and ghrelin. To date the hormonal regulation of AMPK in the hypothalamus, or its potential role in the control of food intake, have not been reported. Here we demonstrate that counter-regulatory hormones involved in appetite control regulate AMPK activity and that pharmacological activation of AMPK in the hypothalamus increases food intake. In vivo administration of leptin, which leads to a reduction in food intake, decreases hypothalamic AMPK activity. By contrast, injection of ghrelin in vivo, which increases food intake, stimulates AMPK activity in the hypothalamus. Consistent with the effect of ghrelin, injection of 5-amino-4-imidazole carboxamide riboside, a pharmacological activator of AMPK, into either the third cerebral ventricle or directly into the paraventricular nucleus of the hypothalamus significantly increased food intake. These results suggest that AMPK is regulated in the hypothalamus by hormones which regulate food intake. Furthermore, direct pharmacological activation of AMPK in the hypothalamus is sufficient to increase food intake. These findings demonstrate that AMPK plays a role in the regulation of feeding and identify AMPK as a novel target for anti-obesity drugs.  相似文献   

5.
Thyroid hormone regulates food intake. We previously reported that rats with triiodothyronine (T3)-induced thyrotoxicosis display hyperphagia associated with suppressed circulating leptin levels, increased hypothalamic neuropeptide Y (NPY) mRNA and decreased hypothalamic pro-opiomelanocortin (POMC) mRNA. AMP-activated kinase (AMPK) is a serine/threonine protein kinase that is activated when cellular energy is depleted. We hypothesized that T3 causes an increase in hypothalamic AMPK activity, which in turn contributes to the development of T3-induced hyperphagia. Rats that were given s.c. injections of T3 (4.5 nmol/kg) had increased food intake 2 h later without alterations in NPY and POMC mRNA levels, but with increased hypothalamic phosphorylated AMPK (169%) and phosphorylated acetyl-CoA carboxylase (194%). To determine the more chronic effects of T3, rats were given 6 daily s.c. injection of T3 or the vehicle. Food intake was significantly increased. Multiple T3 injections increased hypothalamic phosphorylated AMPK (278%) and phosphorylated acetyl-CoA carboxylase (335%) compared to the controls. Intracerebroventricular administration of compound C, an AMPK inhibitor, blocked the food intake induced by a single or multiple injections of T3. Taken together, these results suggest that enhanced hypothalamic AMPK phosphorylation contributes to T3-induced hyperphagia. Hypothalamic AMPK plays an important role in the regulation of food intake and body weight.  相似文献   

6.
α-Melanocyte-stimulating hormone (α-MSH)-induced activation of the melanocortin-4 receptor in hypothalamic neurons increases energy expenditure and inhibits food intake. Active hypothalamic AMP-activated protein kinase (AMPK) has recently been reported to enhance food intake, and in vivo experiments suggested that intrahypothalamic injection of melanocortins decreased food intake due to the inhibition of AMPK activity. However, it is not clear whether α-MSH affects AMPK via direct intracellular signaling cascades or if the release of paracrine factors is involved. Here, we used a murine, hypothalamic cell line (GT1-7 cells) and monitored AMPK phosphorylation at Thr(172), which has been suggested to increase AMPK activity. We found that α-MSH dephosphorylated AMPK at Thr(172) and consequently decreased phosphorylation of the established AMPK substrate acetyl-coenzyme A-carboxylase at Ser(79). Inhibitory effects of α-MSH on AMPK were blocked by specific inhibitors of protein kinase A (PKA) or ERK-1/2, pointing to an important role of both kinases in this process. Because α-MSH-induced activation of ERK-1/2 was blunted by PKA inhibitors, we propose that ERK-1/2 serves as a link between PKA and AMPK in GT1-7 cells. Furthermore, down-regulation of liver kinase B-1, but not inhibition of calcium-calmodulin-dependent kinase kinase-β or TGFβ-activated kinase-1 decreased basal phosphorylation of AMPK and its dephosphorylation induced by α-MSH. Thus, we propose that α-MSH inhibits AMPK activity via a linear pathway, including PKA, ERK-1/2, and liver kinase B-1 in GT1-7 cells. Given the importance of the melanocortin system in the formation of adipositas, detailed knowledge about this pathway might help to develop drugs targeting obesity.  相似文献   

7.
In the brain malonyl-CoA serves the important function of monitoring and modulating energy balance. Because of its central role in the metabolism of higher animals, glucose acts as the principal indicator of global energy status. Specialized neuronal nuclei within the hypothalamus sense blood glucose and signal higher brain centers to adjust feeding behavior and energy expenditure accordingly. As the level of glucose entering the brain rises, food intake is suppressed. Energy status information triggered by glucose is transmitted via hypothalamic signaling intermediaries, i.e. AMPK and malonyl-CoA, to the orexigenic/anorexigenic neuropeptide system that determines hunger and energy expenditure. The central metabolism of glucose by the glycolytic pathway generates ATP which produces a compensatory decrease in AMP level and AMPK activity. Since acetyl-CoA carboxylase (ACC) is a substrate of AMPK, lowering AMP increases the catalytic activity of ACC and thereby, the level of its reaction product, malonyl-CoA. Malonyl-CoA signals the anorexigenic-orexigenic neuropeptide system to suppress food intake. Unlike glucose, however, centrally metabolized fructose increases food intake. This paradox results because fructose bypasses the rate-limiting step of glycolysis and uses a rapid ATP-requiring reaction that abruptly depletes ATP and provokes a compensatory rise in AMP. Thus, fructose has the opposite effect of glucose on the AMPK/malonyl-CoA signaling system and thereby, feeding behavior. The fact that fructose metabolism by the brain increases food intake and obesity risk raises health concerns in view of the large and increasing per capita consumption of high fructose sweeteners, especially by youth.  相似文献   

8.
The hypothalamic AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) pathway is known to play an important role in the control of food intake and energy expenditure. Here, we hypothesize that citrate, an intermediate metabolite, activates hypothalamic ACC and is involved in the control of energy mobilization. Initially, we showed that ICV citrate injection decreased food intake and diminished weight gain significantly when compared to control and pair-fed group results. In addition, we showed that intracerebroventricular (ICV) injection of citrate diminished (80% of control) the phosphorylation of ACC, an important AMPK substrate. Furthermore, citrate treatment inhibited (75% of control) hypothalamic AMPK phosphorylation during fasting. In addition to its central effect, ICV citrate injection led to low blood glucose levels during glucose tolerance test (GTT) and high glucose uptake during hyperglycemic-euglycemic clamp. Accordingly, liver glycogen content was higher in animals given citrate (ICV) than in the control group (23.3+/-2.5 vs. 2.7+/-0.5 microg mL(-1) mg(-1), respectively). Interestingly, liver AMPK phosphorylation was reduced (80%) by the citrate treatment. The pharmacological blockade of beta3-adrenergic receptor (SR 59230A) blocked the effect of ICV citrate and citrate plus insulin on liver AMPK phosphorylation. Consistently with these results, rats treated with citrate (ICV) presented improved insulin signal transduction in liver, skeletal muscle, and epididymal fat pad. Similar results were obtained by hypothalamic administration of ARA-A, a competitive inhibitor of AMPK. Our results suggest that the citrate produced by mitochondria may modulate ACC phosphorylation in the hypothalamus, controlling food intake and coordinating a multiorgan network that controls glucose homeostasis and energy uptake through the adrenergic system.  相似文献   

9.
10.
Energy homeostasis and feeding are regulated by the central nervous system. C75, a fatty acid synthase (FAS) inhibitor, causes weight loss and anorexia, implying a novel central nervous system pathway(s) for sensing energy balance. AMP-activated protein kinase (AMPK), a sensor of peripheral energy balance, is phosphorylated and activated when energy sources are low. Here, we identify a role for hypothalamic AMPK in the regulation of feeding behavior and in mediating the anorexic effects of C75. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR), an activator of AMPK, increased food intake, whereas compound C, an inhibitor of AMPK, decreased food intake. C75 rapidly reduced the level of the phosphorylated AMPK alpha subunit (pAMPKalpha) in the hypothalamus, even in fasted mice that had elevated hypothalamic pAMPKalpha levels. Furthermore, AICAR reversed both the C75-induced anorexia and the decrease in hypothalamic pAMPKalpha levels. C75 elevated hypothalamic neuronal ATP levels, which may contribute to the mechanism by which C75 decreased AMPK activity. C75 reduced the levels of pAMPKalpha and phosphorylated cAMP response element-binding protein (pCREB) in the arcuate nucleus neurons of the hypothalamus, suggesting a mechanism for the reduction in NPY expression seen with C75 treatment. These data indicate that modulation of FAS activity in the hypothalamus can alter energy perception via AMPK, which functions as a physiological energy sensor in the hypothalamus.  相似文献   

11.
Obesity is rapidly increasing and is of great public health concern worldwide. Although there have been remarkable developments in obesity research over the past 10 years, the molecular mechanism of obesity is still not completely understood. Body weight results from the balance between food intake and energy expenditure. Recent studies have found that hypothalamic AMP-activated protein kinase plays a key role in regulating these processes. Leptin, insulin, glucose and alpha-lipoic acid have been shown to reduce food intake by lowering hypothalamic AMP-activated protein kinase activity, whereas ghrelin and glucose depletion increase food intake by increasing hypothalamic AMP-activated protein kinase activity. In addition, this enzyme plays a role in the central regulation of energy expenditure. These findings indicate that hypothalamic AMP-activated protein kinase is an important signal molecule, which integrates nutritional and hormonal signals and modulates feeding behavior and energy expenditure.  相似文献   

12.
The PI3K-AKT, mTOR-p70S6 kinase and AMPK pathways play distinct and critical roles in metabolic regulation. Each pathway is necessary for leptin's anorexigenic effects in the hypothalamus. Here we show that these pathways converge in an integrated phosphorylation cascade to mediate leptin action in the hypothalamus. We identify serine(491) on α2AMPK as the site of convergence and show that p70S6 kinase forms a complex with α2AMPK, resulting in phosphorylation on serine(491). Blocking α2AMPK-serine(491) phosphorylation increases hypothalamic AMPK activity, food intake, and body weight. Serine(491) phosphorylation is necessary for leptin's effects on hypothalamic α2AMPK activity, neuropeptide expression, food intake, and body weight. These results identify an inhibitory AMPK kinase, p70S6 kinase, and demonstrate that AMPK is a substrate for mTOR-p70S6 kinase. This discovery has broad biologic implications since mTOR-p70S6 kinase and AMPK have multiple, fundamental and generally opposing cellular effects that regulate metabolism, cell growth, and development.  相似文献   

13.
Ghrelin, released from the stomach, stimulates food intake through activation of the ghrelin receptor (GHS-R) located on neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons in the hypothalamus. A role for the energy sensor AMP-activated protein kinase (AMPK) and its downstream effector uncoupling protein 2 (UCP2) in the stimulatory effect of exogenous ghrelin on NPY/AgRP expression and food intake has been suggested. This study aimed to investigate whether a rise in endogenous ghrelin levels is able to influence hypothalamic AMPK activity, pACC, UCP2 and NPY/AgRP expression through activation of GHS-R. An increase in endogenous ghrelin levels was established by fasting (24h) or by induction of streptozotocin(STZ)-diabetes (15 days) in GHS-R(+/+) and GHS-R(-/-) mice. GHS-R(+/+) mice showed a significant increase in AgRP and NPY mRNA expression after fasting, which was not observed in GHS-R(-/-) mice. Fasting did not affect AMPK activity nor ACC phosphorylation in both genotypes and increased UCP2 mRNA expression. The hyperghrelinemia associated with STZ-induced diabetes was accompanied by an increased NPY and AgRP expression in GHS-R(+/+) but not in GHS-R(-/-) mice. AMPK activity and UCP2 expression in GHS-R(+/+) mice after induction of diabetes were decreased to a similar extent in both genotypes. Exogenous ghrelin administration tended to decrease hypothalamic AMPK activity. In conclusion, an increase in endogenous ghrelin levels triggered by fasting or STZ-induced diabetes stimulates the expression of AgRP and NPY via interaction with the GHS-R. The changes in AMPK activity, pACC and UCP2 occur independently from GHS-R suggesting that they do not play a major role in the orexigenic effect of endogenous ghrelin.  相似文献   

14.
During aging, decreases in energy expenditure and locomotor activity lead to body weight and fat gain. Aging is also associated with decreases in muscle strength and endurance leading to functional decline. Here, we show that lifelong deletion of ghrelin prevents development of obesity associated with aging by modulating food intake and energy expenditure. Ghrelin deletion also attenuated the decrease in phosphorylated adenosine monophosphate‐activated protein kinase (pAMPK) and downstream mediators in muscle, and increased the number of type IIa (fatigue resistant, oxidative) muscle fibers, preventing the decline in muscle strength and endurance seen with aging. Longevity was not affected by ghrelin deletion. Treatment of old mice with pharmacologic doses of ghrelin increased food intake, body weight, and muscle strength in both ghrelin wild‐type and knockout mice. These findings highlight the relevance of ghrelin during aging and identify a novel AMPK‐dependent mechanism for ghrelin action in muscle.  相似文献   

15.
The hypothalamic peptides corticotrophin releasing factor (CRF) and urocortin (UCN) decrease food intake and increase energy expenditure when administered either centrally or peripherally to rodents. The effects of CRF and UCN on food intake in other mammals (for example marsupials), however, are not known. Peripherally administered CRF induced cortisol release in the marsupial Sminthopsis crassicaudata via the CRF1 receptor, and central CRF administration potently decreased food intake, as in rodents. When peripherally administered, both CRF and UCN decreased food intake in S. crassicaudata, but UCN was considerably more potent ( approximately 50 fold) in this regard. The anorectic effects of CRF and UCN were not blocked by the CRF1 receptor antagonist antalarmin, suggesting that the peripheral effects of CRF and UCN on food intake are mediated primarily by the CRF2 receptor.  相似文献   

16.
Impairment in the regulation of energy homeostasis and imbalance between energy intake and energy expenditure lead to many metabolic disorders and diseases such as obesity and type 2 diabetes. AMP-activated protein kinase (AMPK) is considered as a "fuel-gauge" in the cell and plays a key role in the regulation of energy metabolism. Activated by an increase in the AMP/ATP ratio, AMPK switches on catabolic pathways such as fatty acid oxidation and switches off anabolic pathways such as lipogenesis or gluconeogenesis. Insulin-sensitizing adipokines (leptin and adiponectin) and anti-diabetic drugs (thiazolidinediones and biguanides) are acting in part through the activation of AMPK. More recent findings indicate that AMPK plays also a major role in the control of whole body energy homeostasis by integrating, at the hypothalamus level, nutrient and hormonal signals that regulate food intake and energy expenditure. AMPK provides therefore a potential target for the treatment of metabolic diseases such as obesity and type II diabetes.  相似文献   

17.
AMP-activated protein kinase (AMPK) is a key regulator of cellular energy balance and of the effects of leptin on food intake and fatty acid oxidation. Obesity is usually associated with resistance to the effects of leptin on food intake and body weight. To determine whether diet-induced obesity (DIO) impairs the AMPK response to leptin in muscle and/or hypothalamus, we fed FVB mice a high fat (55%) diet for 10-12 weeks. Leptin acutely decreased food intake by approximately 30% in chow-fed mice. DIO mice tended to eat less, and leptin had no effect on food intake. Leptin decreased respiratory exchange ratio in chow-fed mice indicating increased fatty acid oxidation. Respiratory exchange ratio was low basally in high fat-fed mice, and leptin had no further effect. Leptin (3 mg/kg intraperitoneally) increased alpha2-AMPK activity 2-fold in muscle in chow-fed mice but not in DIO mice. Leptin decreased acetyl-CoA carboxylase activity 40% in muscle from chow-fed mice. In muscle from DIO mice, acetyl-CoA carboxylase activity was basally low, and leptin had no further effect. In paraventricular, arcuate, and medial hypothalamus of chow-fed mice, leptin inhibited alpha2-AMPK activity but not in DIO mice. In addition, leptin increased STAT3 phosphorylation 2-fold in arcuate of chow-fed mice, but this effect was attenuated because of elevated basal STAT3 phosphorylation in DIO mice. Thus, DIO in FVB mice alters alpha2-AMPK in muscle and hypothalamus and STAT3 in hypothalamus and impairs further effects of leptin on these signaling pathways. Defective responses of AMPK to leptin may contribute to resistance to leptin action on food intake and energy expenditure in obese states.  相似文献   

18.
Leptin: an essential regulator of lipid metabolism   总被引:5,自引:0,他引:5  
This paper reviews the general mechanisms by which leptin acts as a regulator of lipid reserves through changes in food intake, energy expenditure and fuel selection, with an emphasis on its direct effects on cellular lipid metabolism. Briefly, when leptin levels increase, food consumption decreases via modulation of hypothalamic neuropeptides. As well, normal decreases in energy expenditures (e.g. with diurnal cycles or reduced caloric intake) do not occur. This is probably caused by an increase in mitochondrial proton leak mediated by leptin via increases in sympathetic nervous system stimulation and thyroid hormone release. The decrease in caloric input coupled with relatively higher energy expenditure, therefore, leads to negative energy balance. Leptin also changes the fuel source from which ATP is generated. Fuel preference switches from carbohydrate (glucose) to lipid (fatty acids). This effect arises through stimulation of triacylglycerol catabolism by leptin. In vitro studies show that leptin is a potent stimulator of lipolysis and fatty acid oxidation in adipocytes and other cell types. Consequently, leptin is also a regulator of cellular triacylglycerol content. Hormonal regulation of leptin, as well as its role in fasting and seasonal weight gain and energy expenditure are also briefly discussed.  相似文献   

19.

Background

Hypothalamic AMPK acts as a cell energy sensor and can modulate food intake, glucose homeostasis, and fatty acid biosynthesis. Intrahypothalamic fatty acid injection is known to suppress liver glucose production, mainly by activation of hypothalamic ATP-sensitive potassium (K(ATP)) channels. Since all models employed seem to involve malonyl-CoA biosynthesis, we hypothesized that acetyl-CoA carboxylase can modulate the counter-regulatory response independent of nutrient availability.

Methodology/Principal Findings

In this study employing immunoblot, real-time PCR, ELISA, and biochemical measurements, we showed that reduction of the hypothalamic expression of acetyl-CoA carboxylase by antisense oligonucleotide after intraventricular injection increased food intake and NPY mRNA, and diminished the expression of CART, CRH, and TRH mRNA. Additionally, as in fasted rats, in antisense oligonucleotide-treated rats, serum glucagon and ketone bodies increased, while the levels of serum insulin and hepatic glycogen diminished. The reduction of hypothalamic acetyl-CoA carboxylase also increased PEPCK expression, AMPK phosphorylation, and glucose production in the liver. Interestingly, these effects were observed without modification of hypothalamic AMPK phosphorylation.

Conclusion/Significance

Hypothalamic ACC inhibition can activate hepatic counter-regulatory response independent of hypothalamic AMPK activation.  相似文献   

20.
Hypothalamic AMP-activated protein kinase (AMPK) plays important roles in the regulation of food intake by altering the expression of orexigenic or anorexigenic neuropeptides. However, little is known about the mechanisms of this regulation. Here, we report that hypothalamic AMPK modulates the expression of NPY (neuropeptide Y), an orexigenic neuropeptide, and POMC (pro-opiomelanocortin-α), an anorexigenic neuropeptide, by regulating autophagic activity in vitro and in vivo. In hypothalamic cell lines subjected to low glucose availability such as 2-deoxy-d-glucose (2DG)-induced glucoprivation or glucose deprivation, autophagy was induced via the activation of AMPK, which regulates ULK1 and MTOR complex 1 followed by increased Npy and decreased Pomc expression. Pharmacological or genetic inhibition of autophagy diminished the effect of AMPK on neuropeptide expression in hypothalamic cell lines. Moreover, AMPK knockdown in the arcuate nucleus of the hypothalamus decreased autophagic activity and changed Npy and Pomc expression, leading to a reduction in food intake and body weight. AMPK knockdown abolished the orexigenic effects of intraperitoneal 2DG injection by decreasing autophagy and changing Npy and Pomc expression in mice fed a high-fat diet. We suggest that the induction of autophagy is a possible mechanism of AMPK-mediated regulation of neuropeptide expression and control of feeding in response to low glucose availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号