首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Question: What is the impact of grazing and/or afforestation on grassland diversity, species composition and cover parameters? Location: Semi‐arid Mediterranean grasslands of Jordan. Methods: Vegetation, litter, bare soil and rock cover were compared among four management types – free grazing and protected from grazing with three levels of tree cover. Species composition, plant cover, species richness and evenness were used to evaluate differences in vegetation among management types. Species composition differences among management types were also investigated. Results: Semi‐arid Mediterranean grasslands harbour appreciable levels of plant biodiversity. Grazing did not affect plant diversity, indicating the high resilience against and adaptation to grazing; however,grazing affected species composition and cover parameters. Afforestation seems to protect soil through higher litter cover but its impact on plant biodiversity was negative and markedly affected species composition. Conclusions: Neither protection from grazing or massive afforestation alone are sufficient for conserving biodiversity in this system. A management model is suggested where the landscape should be maintained as a mosaic of four management types: complete protection from grazing, grazing rotation, planting sparse trees in eroded areas and revegetating degraded areas using native, herbaceous and grazing tolerant species.  相似文献   

2.
Gaigher  R.  Pryke  J. S.  Samways  M. J. 《Biodiversity and Conservation》2021,30(13):4089-4109

Habitat loss threatens insect diversity globally. However, complementary vegetation types in remaining habitat increases opportunities for species survival. We assess the extent to which indigenous forest patches moderate the impact of exotic commercial afforestation on grassland butterflies. Butterflies were sampled in grassland along uncorrelated gradients of landscape-scale indigenous forest and plantation cover, while controlling for variation in local vegetation composition. We separately assessed responses by butterfly groups differing in habitat preference, larval diet, and mobility. There was no effect of landscape- or local-scale variables on species richness, but there was a strong interactive effect of forest and plantation cover on butterfly assemblage structure. The effect varied according to species traits. When forest cover was high, assemblages did not differ at different levels of plantation cover. However, plantation cover significantly influenced assemblage structure when forest cover was low. Grassland with limited forest cover in the protected area supported unique assemblages with high frequency of less mobile, specialized species with herbaceous larval host plants, whereas grassland with low forest cover near plantations had a prevalence of mobile, generalist species. A positive association between forest cover and butterflies with woody larval host plants suggests that indigenous forest patches improved the suitability of fragmented grassland for a subset of butterflies, emphasising the value of natural heterogeneity in transformed areas. However, certain butterfly traits associated with large, open grassland were under-represented in grassland between plantations, underscoring the importance of open areas in the broader landscape to conserve the full diversity of species.

  相似文献   

3.
The effects of vegetation types and environmental factors on carabid beetle (Coleoptera: Carabidae) communities were studied. Carabid beetles were collected using pitfall traps (total 2844 trapping days) and seven microenvironmental factors were measured in four vegetation types: grassland, natural evergreen coniferous forest (Pinus densiflora), deciduous broad-leaved natural forest (Quercus crispula, Betula platyphylla, Alnus japonica, or Fagus crenata), and deciduous coniferous plantation (Larix kaempferi) in cool temperate Japan. These four vegetation types provided a novel comparison between natural forests and plantations because the vast majority of related studies have investigated only deciduous broad-leaved natural forests and evergreen coniferous plantations. PERMANOVA indicated that vegetation types affected carabid community composition. Ordination plots showed that community composition differed greatly between grassland and forest vegetation types, but that community composition in the plantation forest overlapped with that of natural forest types. Characteristics differentiating the grassland included a high proportion of winged species and a low mean carabid body weight. Among the examined environmental factors, litter depth, soil water content, and depth of the soil A-horizon had large effects on carabid communities. These results suggest that the effect of afforestation on carabid communities in cool temperate Japan might be insignificant compared with the effects of cover types (deciduous vs. evergreen) and microenvironmental factors.  相似文献   

4.
Aims Mongolian pine (Pinus sylvestrisvar.mongolica) and Xiaozhuan poplar (Populus × xiaozhuanica) are two predominant afforestation tree species in the semi-arid sandy lands of northeast China, which are characterized by poor soil nutrients. Plant litter decomposition plays a critical role in regulating nutrient cycling in terrestrial ecosystems. Admixture of broadleaf litter to conifer litter is expected to improve litter decomposition and soil fertility, and thus productivity. However, the effects on the decomposition of litter mixture of the above two tree species are not well understood. Therefore, it is essential to assess the decomposition performance of litter mixture with the aim of improving forest nutrient management and the establishment of mixed plantation. Appropriate forest management practice is critical for the sustainability of site productivity in plantation forests.  相似文献   

5.

东灵山华北落叶松人工林的分布格局及环境解释

  总被引:1,自引:0,他引:1  
应用TWINSPAN、CCA和物种多样性分析,从植物群落、植物种与环境的生态关系等方面研究了东灵山华北落叶松人工林的植被分布格局,并给予合理的环境解释。TWINSPAN分类将华北落叶松人工林分为4个类型,分类结果在CCA二维排序图上得到了较好的验证。样方与物种的CCA排序较好地揭示了该区华北落叶松人工林的分布格局与环境梯度的关系:坡位、坡度、土壤厚度和海拔是影响该区华北落叶松人工林的主导因子。结合物种多样性分析,结果表明东灵山绝大多数华北落叶松人工林生长良好,并根据华北落叶松喜凉湿习性,建议在该区自然分布海拔以下造林时,应优先选择阴坡和半阴坡的中、下位坡。  相似文献   

6.
河北小五台山国家级自然保护区森林群落与环境的关系   总被引:2,自引:0,他引:2  
植物与环境之间的关系是一个复杂的演变过程,运用数量生态学方法探讨森林群落的物种组成、种群的生态特征、不同植物群落与环境之间的关系,有助于保护该区森林群落的稳定性和生物多样性。根据148个森林群落样方数据,选用双向指示种分析(TWINSPAN)和典范对应分析(CCA)方法,对河北小五台山国家级自然保护区森林群落进行分类和排序研究。结果表明:(1)TWINSPAN将该区的森林群落分为20个类型;(2)CCA排序结果较好地反映出群落分布格局与环境梯度的关系,各个森林群落类型在前两轴分异明显,在11个环境因子中,海拔、坡位、凋落层厚度、土壤导电率、土壤温度、土壤湿度、土壤厚度和干扰程度这8个环境因子对森林群落的分布起较大的作用,影响森林群落的分布格局,形成不同的植被类型。(3)乔木层优势种的CCA二维排序图所揭示的环境梯度与群落类型的分布有很大的相似性;t值双序图阐明了海拔、凋落层厚度、土壤温度、干扰程度等环境因子对森林群落乔木层优势种有着重要影响。采用TWINSPAN分类与CCA排序的方法,较好地解释了森林群落与环境因子的关系,为小五台山地区森林生态系统的科学管理和保护提供了理论依据,研究结果也为同类地区森林生态系统研究及保护提供参考和借鉴。  相似文献   

7.
Leafhoppers and related Auchenorrhynchous Hemiptera (AH) are among the most diverse grassland herbivores, and many have been linked inexorably to grassland vegetation through diet and shelter for millions of years. Are AH–plant communities in natural grasslands tightly integrated, how does the interaction differ across major ecological gradients, and do habitat or environmental factors explain the most variance in AH community structure? These questions have implications for the conservation of biodiversity and in evaluating effects of a warming climate. Using grasslands of the central Tien Shan Mountains as a natural laboratory, we examine whether AH species assemblages are concordant with vegetation in terms of community structure using closely associated species-level samples. Data were recorded from a nearly 3000-m elevation gradient crossing four arid and three montane grassland vegetation classes. We found elements of AH–plant community classification and structure to be closely correlated except for at the arid–montane habitat transition where a small group of widespread AH species were significant indicators for vegetation classes in both major grassland types. AH species richness and abundance are positively correlated with plant species density and percent cover and, correspondingly, peak at mid-elevations in association with montane grasslands. While overall elevation (and covariate mean annual temperature) explains the most variance in AH species assemblages, the sum total of habitat factors explain more variance than environmental factors when arid and montane grasslands were examined separately, but environmental factors are co-equal with habitat factors when the grassland types are combined. Unexplained variance in the AH community assemblages, attributable to individualistic species responses to environmental and habitat factors, slightly exceeds the total accounted for by the model.  相似文献   

8.
The target rate of afforestation in Ireland over the next 30 years is 20,000 ha per year, which would result in an increase of the forest cover from the current 10% to 17%. In order to promote sustainable forest management practices, it is essential to know the composition and conservation value of habitats where afforestation is planned and the effects of subsequent planting upon biodiversity. The objectives of this study were to investigate changes in vegetation composition and diversity of grasslands 5 years after afforestation with Sitka spruce (Picea sitchensis) and determine the primary ecological and management factors responsible for these changes. Species cover, environmental and management data were collected from 16 afforested and unplanted improved and wet grassland site pairs in Ireland. Our results indicate that 5 years after tree planting, there were significant changes in richness, composition, and abundance of species. Competitive and vigorous grasses were more abundant in planted than in unplanted sites, as were generalist species found in both open and wooded habitats, while small-stature shade-sensitive species were less abundant. Vascular plant species richness and Shannon’s diversity index were higher in unplanted wet grassland, than in the planted sites. Bryophyte species richness was higher in planted improved grassland than in unplanted sites. The differences were primarily the result of the exclusion of grazing, ground preparation, changes in nutrient management and drainage for afforestation. Drainage ditches provided a temporary habitat for less competitive species, but the overall effect of drainage was to reduce the diversity of species dependent on wet conditions. Variance partitioning showed differences in the relative influences of environmental and management variables on biodiversity in the two habitats, probably due to the greater pre-afforestation grazing pressure and fertilisation levels in improved grasslands. The differences in biodiversity between planted and unplanted grasslands indicate that afforestation represents a threat to semi-natural habitats where distinctive and highly localised plant communities could potentially occur.  相似文献   

9.
小兴安岭凉水自然保护区蝶类多样性   总被引:5,自引:0,他引:5  
顾伟  马玲  刘哲强  焦玥  王利东  张琛  孙虎  孙美欧 《生态学报》2015,35(22):7387-7396
2012—2013年选取原始阔叶红松林、人工林、天然次生林和灌丛草甸4种典型植被生境,对小兴安岭凉水自然保护区的蝶类进行了系统研究。共捕获蝶类1438头,分属7科47属76种,4种植被生境中蝶类群落优势类群均为蛱蝶科,不同生境蝶类群落相似性与生境植被类型密切相关。计算分析了4种植被生境中蝶类多样性指数、物种丰富度、优势度指数、均匀度指数和种-多度关系,结果表明:3种森林生境蝶类多样性大于灌丛草甸,原始阔叶红松林蝶类具有最高的多样性指数、较高的物种丰富度、均匀度指数以及最低的优势度指数,种-多度分布为对数正态分布,说明环境质量优越,最适合蝶类生存和繁衍;灌丛草甸蝶类的多样性指数、物种丰富度和均匀度指数均为最低,而优势度指数最高,种-多度分布为对数级数分布,反映植物群落结构较单一,适合各种蝶类生存和繁衍的资源不足;天然次生林蝶类多样性指数、物种丰富度高于人工林,均匀度小于人工林,但前者种-多度分布为对数级数模型,后者为对数正态模型,说明在封山育林状态下,对森林植被组成进行适当合理的干扰,有利于森林的健康发展  相似文献   

10.
Aims After abandonment of grasslands, secondary succession leads to the invasion by woody species. This process begins with the accumulation of tree litter in the forest–grassland ecotone. Our objectives were to determine the relationships between litter amounts and vegetation composition and cover along natural forest–grassland ecotones and to experimentally study the initial effects of tree litter accumulation on grassland vegetation and on microsite conditions.Methods We established 11 transects varying from 12 to 15 m in length in different forest–grassland ecotones in the Lahn-Dill highlands, Germany, and measured the mass and cover of tree litter and the cover and composition of vegetation at five sequential positions along each transect by using 1 m 2 plots with five replications. In a field experiment, we established plots subjected to different litter amounts (0, 200 and 600g m ?2) and evaluated changes in grassland vegetation, soil temperature and soil nutrient availability below the litter layer.Important findings Tree litter amounts decrease from 650 to 65g m ?2 across the forest–grassland ecotone. Vegetation changed from shrubs and annual species (adapted to more stressful conditions) in the forests edge to grasses, rosettes and hemirosette species (with higher competitive abilities) in the grassland. These anthropogenic forest–grassland ecotones showed abrupt edges, and the two adjacent ecosystems were characterized by different species pools and functional groups. In the field experiment, the presence of a litter layer reduced vegetation biomass and cover; the species richness was only reduced in the treatment with high litter (600g m ?2). Additionally, adding litter on top of vegetation also reduced thermal amplitude and the number of frost days, while increasing the availability of some nutrients, such as nitrogen and aluminium, the latter being an indicator of soil acidification. Adding a tree litter layer of 600g m ?2 in grassland areas had strong effects on the composition and diversity of grassland vegetation by reducing the cover of several key grassland species. In, or near, forest edges, litter accumulation rapidly changes established vegetation, microsite conditions and soil nutrients.  相似文献   

11.
Understanding the mechanisms limiting the distributions of organisms is necessary for predicting changes in community composition along habitat gradients. In many areas of the USA, land originally cleared for agriculture has been undergoing a process of reforestation, creating a gradient of canopy cover. For small temporary wetlands, this gradient can alter abiotic conditions and influence the resource base of wetland food webs by affecting litter inputs. As distributions of amphibians and many other temporary wetland taxa correlate with canopy cover, we experimentally manipulated shade levels and litter types in pond mesocosms to explore mechanisms limiting species performance in wetlands with canopy cover. Most differences between ponds were mediated by litter type rather than direct effects of shading. Although all three amphibian species tested are open-canopy specialists, spring peepers were the only species to show decreased survival in shaded ponds. Pond litter type generally had strong effects on growth and development rates, with tadpoles of two species in grass litter ponds growing to twice the size of, and metamorphosing 7 days earlier than, those in leaf litter ponds. Contrary to our initial hypothesis, shade level and litter type showed very few significant interactions. Our results indicate that the effects of shading cannot be considered in isolation of vegetation changes in pond basins when evaluating the effects of forest succession on temporary pond communities.  相似文献   

12.
Plantation forests have been expanding in many tropical and subtropical environments. Howerver, even when they replace less wildlife friendly land uses such as pastures and annual crops, the biodiversity levels of pristine natural habitats often have not been recovered. Here we addressed how the landscape context of plantation forests located in South-eastern Brazil affects species richness and community resilience of medium and large size mammals. The area covered by native habitat fragments surrounding plantation forests is positively related to functional richness, including the presence of species more vulnerable to extinction in fragmented landscapes. In addition, the degree of aggregation of plantation forest stands is negatively related to more vulnerable species. No primates were recorded in our seven plantation forest sites (ranging from 272 to 24,921 ha), even when they were seen in native habitat fragments adjacent to commercial tree stands. Two invasive species (Sus scrofa and Lepus capensis) were recorded in four plantation forest sites. The impoverishment of fauna in plantation forests is due to two factors. First, plantation forests generally are structurally simplified habitats when compared to highly diverse tropical forests. Secondly, the isolation from habitat fragments which act as source of individuals in the landscape precludes the establishment of individual in plantation forest. We also highlighted the management practices to improve the complexity of vegetation in commercial tree stands should be taken cautiously, insofar as reduced productivity per area entails a greater demand for land. Thus, an alternative would be intensify the management of the commercial tree stands for wood production together with the restoration of adjacent areas set aside to conservation and native habitat fragments protection.  相似文献   

13.
Changes in land use strongly influence habitat attributes (e.g., herbaceous ground cover and tree richness) and can consequently affect ecological functions. Most studies have focused on the response of these ecological functions to land‐use changes within only a single vegetation type. These studies have often focused solely on agricultural conversion of forests, making it nearly impossible to draw general conclusions across other vegetation types or with other land‐use changes (e.g., afforestation). We examined the consequences of agricultural conversion for seed removal by ants in native grassland, savanna, and savanna‐forest habitats that had been transformed to planted pastures (Brachiaria decumbens) and tree plantations (Eucalyptus spp.) and explored if changes in seed removal were correlated with differences in habitat attributes between habitat types. We found that land‐use changes affected seed removal across the tree cover gradient and that the magnitude of impact was influenced by similarity in habitat attributes between native and converted habitats, being greater where there was afforestation (Eucalyptus spp in grassland and savanna). Herbaceous ground cover, soil hardness, and tree richness were the most important habitat attributes that correlated with differences in seed removal. Our results reveal that the magnitude of impact of land‐use changes on seed removal varies depending on native vegetation type and is associated with the type of habitat attribute change. Our findings have implications for biodiversity in tropical grassy systems: afforestation can have a greater detrimental impact on ecological function than tree loss.  相似文献   

14.
The diversity of beetle assemblages in different habitat types (primary forest, logged forest, acacia plantation and oil palm plantation) in Sabah, Malaysia was investigated using three different methods based on habitat levels (Winkler sampling, flight-interception-trapping and mist-blowing). The overall diversity was extremely high, with 1711 species recorded from only 8028 individuals and 81 families (115 family and subfamily groups). Different degrees of environmental changes had varying effects on the beetle species richness and abundance, with oil palm plantation assemblage being most severely affected, followed by acacia plantation and then logged forest. A few species became numerically dominant in the oil palm plantation. In terms of beetle species composition, the acacia fauna showed much similarity with the logged forest fauna, and the oil palm fauna was very different from the rest. The effects of environmental variables (number of plant species, sapling and tree densities, amount of leaf litter, ground cover, canopy cover, soil pH and compaction) on the beetle assemblage were also investigated. Leaf litter correlated with species richness, abundance and composition of subterranean beetles. Plant species richness, tree and sapling densities correlated with species richness, abundance and composition of understorey beetles while ground cover correlated only with the species richness and abundance of these beetles. Canopy cover correlated only with arboreal beetles. In trophic structure, predators represented more than 40% of the species and individuals. Environmental changes affected the trophic structure with proportionally more herbivores (abundance) but fewer predators (species richness and abundance) in the oil palm plantation. Biodiversity, conservation and practical aspects of pest management were also highlighted in this study.  相似文献   

15.
Abstract. Composition of hill slope vegetation was studied in a semi-arid part of upland Tanzania where all grazing had been banned for 12 yr. The hills had been severely overgrazed previously and suffered from heavy gully and sheet erosion. Eight vegetation types are described. Floristic gradients revealed by numerical ordination techniques were found to be related mainly to degree of erosion, soil type and succession. The more or less bare soil that prevailed after grazing had ceased is now covered by grassland, woodland and immature secondary forest. The grasslands are still characterized by early successional species and they will probably remain open grassland as long as frequent burning continues. Brachystegia woodlands may have developed during earlier periods when the field layer was sparse due to grazing. The grazing had reduced the frequency of fire which in turn promoted the establishment of Brachystegia spp. Secondary forests are believed to have developed mainly where fires were not frequent, particularly at higher altitudes.  相似文献   

16.
The replacement of natural by anthropogenic habitat changes biological communities in any biome. Variations in environmental conditions along the chronosequence of tree plantations may act as a gradient of environmental filtering where the gain or loss of species occurs. It is expected that environmental filtering increases with the decrease in environmental similarity between the plantations and the natural habitat. Young tree plantations are structurally more similar to grasslands than to mature plantations, which in turn are structurally more similar to subtropical forest than young plantations. This study compares patterns of beta diversity across exotic pine plantation chronosequences in contrasting biomes. We predict that taxonomic and functional beta diversity between plantation and the natural habitat assemblages increase with plantation age in grasslands and decrease in the subtropical forest. We sampled epigean ants and measured environmental variables at 54 plantations of different ages and natural habitats in grassland and forest biomes in Argentina. Taxonomic and functional beta diversity between natural habitat and pine plantations were estimated through dissimilarity indexes of turnover and nestedness. To assess the response of beta diversity estimators to plantation age we performed general linear and non-linear models. Results revealed opposite beta diversity patterns between biomes along the plantation cycle. Turnover increased and nestedness decreased with declining environmental similarity between pine plantations and the natural habitats; changes in the identity of the species were coupled to changes in their functional characteristics. Thus, a given environmental gradient may produce different diversity patterns depending on the regional species pool. Forestry practices that generate environmental conditions similar to natural environments could help to conserve species from the natural habitat.  相似文献   

17.
Understanding the relationships among community structure, vegetation structure and availability of food resources are a key to unravelling the ecological processes that structure biological communities. In this study, we tested (i) whether the composition of small mammal communities changed across gradients in habitat quality in tropical forest fragments, and (ii) whether any observed change could be explained by the functional traits of species. We sampled 24 trapping grids in fragments of semi‐deciduous forest, in each of two 6‐month periods. We considered each trapping grid as a sampling unit, for which we collected three datasets: an environmental matrix (vegetation structure and food resource availability), the abundance of small mammal species (community structure) and a matrix of functional traits (ecological and morphological traits which express tolerance to habitat disturbance and trophic guild). We used an RLQ approach to evaluate the association between traits and environmental gradients. Forest‐specialist and scansorial–arboreal species were associated with more complex habitat that had greater litter and canopy cover and more fallen logs. In relation to trophic guilds, granivore (fruit seeds), insectivorous and omnivorous species were also associated with higher complexity habitat, while frugivores were associated with shrub cover and availability of fruits. We conclude that functional traits (habitat use, use of vertical strata and diet) provide valuable insights into the distribution of small mammals along gradients of habitat quality in tropical forest fragments. We highlight that communities studies in fragmented landscapes should investigate the different components of biodiversity not only in landscape‐scale but also in habitat scale. Abstract in Portuguese is available with online material.  相似文献   

18.
江洪 《植物生态学报》1994,18(3):209-218
 本文应用DCA排序的方法进行了四川西北部和甘肃南部云冷杉林的梯度分析,建立了植物群落梯度环境解释的数学模型和植物群落地理分布的数学模型。研究结果表明:影响川西北甘南云冷杉林植物群落地理分布的生态梯度中最显著并起主导作用的是温度梯度和水分梯度。在水分梯度上,大致有这样的植被序列,由较湿的藓类和杜鹃冷杉及云杉林,中生性的箭竹冷杉林和云杉林,偏旱的高山栎冷杉林和云杉林;处于恢复中期的桦木林的生境也偏旱,但一般不如高山栎林。冷杉林比云杉林更趋于阴湿的生境。 在温度梯度上,呈现出灌木云杉林—桦木林—落阔冷杉林—高山栎云杉林—箭竹云杉林—箭竹红桦林—高山栎冷杉林—藓类红桦林—藓类云杉林—箭竹冷杉林—藓类云冷杉林—藓类冷杉林—小叶章云杉林—杜鹃冷杉林的排序。基本特征是:川西北和甘南的云杉林的温度需求高于冷杉林。川西北云冷杉林与甘南云冷杉林在DCA排序轴上没有明显的区别。虽然川西北地区云冷杉林的海拔分布高于甘南地区,但是其纬度也低于甘南,故在温度条件上基本一致。在水分梯度上,川西北云冷杉林的湿度要稍大于甘南云冷杉林。利用植物地理分布的数学模型和有关的图、表,详细地分析了植物群落的空间分布,进行了环境解释,并找出了主导的环境因子。  相似文献   

19.
We investigated seasonal fluctuation patterns in species and individuals of adult butterflies and flowering plants providing nectar in a semi-natural grassland in central Japan. We considered their interrelationships and implications for conservation. The semi-natural grassland included different vegetation structures and management regimes, including: (1) firebreaks where the grass was mowed and removed, (2) plantation areas that were mowed, (3) unpaved roads with mowed banks, (4) abandoned grassland, (5) scattered scrub forest, and (6) the surrounding forest. The sites with management (e.g., firebreaks), plantations and banks of the unpaved road sustained a larger number of butterflies and flowers than sites without management, such as the abandoned grassland, scrub forest and surrounding forest. The number of butterflies increased in the firebreak in June and at all sites in August and September. The firebreak sustained flowers in the spring, and the plantation area and banks of the unpaved road sustained flowers primarily in August and September, which was correlated with the distribution of butterflies. The different treatments such as mowing or mowing with removal of grass induced different numbers of flowers of each species affecting the habitat of adult butterflies through a season. On the other hand, the shrub tree species composing the scrub forest were host plants for the larvae of certain butterfly species. Our results suggest that heterogeneous environments with different human management or different vegetation structure or both could support habitat for various butterfly species, depending on the season and the seral stage.  相似文献   

20.
为了解宁夏黄土丘陵区不同生境地表甲虫群落多样性变化规律及与环境因子的关系, 并探讨不同生态恢复措施对维持地表甲虫群落多样性的影响, 2013年7-8月, 作者利用陷阱法调查了该区6种生境内的地表甲虫群落多样性。结果表明: 灌草混交林地、乔灌混交林地、生态薪炭林地中地表甲虫物种丰富度和个体数量均较高, 天然封育草地、生态经济林地和水平农田中物种丰富度较低, 生态经济林地和水平农田中甲虫个体数量显著高于天然封育草地。不同生境间, 灌草混交林地、乔灌混交林地与生态薪炭林地之间、生态经济林地与水平农田之间甲虫群落组成相似性较高。多元回归分析表明, 草本层生物量、灌木层盖度及土壤含水量是影响甲虫物种丰富度的决定因素, 林冠层盖度和枯落物厚度是决定地表甲虫个体数量的重要因素。CCA分析表明, 枯落物盖度、枯落物厚度、林冠层盖度及草本层盖度是影响地表甲虫群落组成的重要环境因子。研究表明, 灌草混交林地为地表甲虫群落多样性维持较好的生境类型, 是宁夏黄土丘陵区典型生态恢复的最优模式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号