首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Krajewski WA  Vassiliev OL 《Biochemistry》2012,51(21):4354-4363
Functioning of histone lysine methyltransferases (HKMTs) involves interactions of their catalytic domain "SET" with the N-termini of histone H3. However, these interactions are restricted in canonical nucleosomes due to the limited accessibility of H3 termini. Here we investigated whether nucleosome remodeling with the yeast Isw2 affects nucleosome affinity to the SET domain of ALL-1 HKMT. Reconstitution of mononucleosomes by salt dilutions also produces some nucleosome-dimer particles (self-associated mononucleosomes, described by: Tatchell and van Holde (1977) Biochemistry, 16, 5295-5303). The GST-tagged SET-domain polypeptide of ALL-1 was assayed for binding to assembled mononucleosomes and nucleosome-dimer particles, either intact or remodeled with purified yeast Isw2. Remodeling of mononucleosomes does not noticeably affect their affinity to SET domain; however, yIsw2 remodeling of nucleosome-dimer particles facilitated their association with GST-SET polypeptide. Therefore, it is conceivable that nucleosome interactions in trans could be implicated in the maintenance of chromatin methylation patterns in vivo.  相似文献   

12.
13.
14.
Ai X  Parthun MR 《Molecular cell》2004,14(2):195-205
The yeast Hat1p/Hat2p type B histone acetyltransferase complex is localized to both the cytoplasm and nucleus. We isolate the nuclear form of the Hat1p/Hat2p complex and find that it copurifies with the product of the uncharacterized open reading frame YLL022C (named Hif1p). The functional significance of the association of Hif1p with the Hat1p/Hat2p complex is confirmed by the observation that hif1Delta and hat1Delta strains display similar defects in telomeric silencing and DNA double-strand break repair. Hif1p is a histone chaperone that selectively interacts with histones H3 and H4. Hif1p is also a chromatin assembly factor, promoting the deposition of histones in the presence of a yeast cytosolic extract. In vivo, the nuclear Hat1p/Hat2p/Hif1p complex is bound to acetylated histone H4, as well as histone H3. The association of Hif1p with acetylated H4 requires Hat1p and Hat2p providing a link between type B histone acetyltransferases and chromatin assembly.  相似文献   

15.
16.
Members of the ISWI family of chromatin remodeling factors hydrolyze ATP to reposition nucleosomes along DNA. Here we show that the yeast Isw2 complex interacts with DNA in a nucleotide-dependent manner at physiological ionic strength. Isw2 efficiently binds DNA in the absence of nucleotides and in the presence of a nonhydrolyzable ATP analog. Conversely, ADP promotes the dissociation of Isw2 from DNA. In contrast, Isw2 remains bound to mononucleosomes through multiple cycles of ATP hydrolysis. Solution studies show that Isw2 undergoes nucleotide-dependent alterations in conformation not requiring ATP hydrolysis. Our results indicate that during an Isw2 remodeling reaction, hydrolysis of successive ATP molecules coincides with cycles of DNA binding, release, and rebinding involving elements of Isw2 distinct from those interacting with nucleosomes. We propose that progression of the DNA-binding site occurs while nucleosome core contacts are maintained and generates a force dissipated by disruption of histone-DNA interactions.  相似文献   

17.
To facilitate the biochemical characterization of chromatin-associated proteins in the budding yeast Saccharomyces cerevisiae, we have developed a system to assemble nucleosomal arrays on immobilized templates using recombinant yeast core histones. This system enabled us to analyze the interaction of Isw2 ATP-dependent chromatin remodeling complex with nucleosomal arrays. We found that Isw2 complex interacts efficiently with both naked DNA and nucleosomal arrays in an ATP-independent manner, suggesting that ATP is required at steps subsequent to this physical interaction. We identified the second subunit of Isw2 complex, encoded by open reading frame YGL 133w (herein named ITC1), and found that both subunits of the complex, Isw2p and Itc1p, are essential for efficient interaction with DNA and nucleosomal arrays. Both subunits are also required for nucleosome-stimulated ATPase activity and chromatin remodeling activity of the complex. Finally, we found that ITC1 is essential for function of Isw2 complex in vivo, since isw2 and itc1 deletion mutants exhibit virtually identical phenotypes. These results demonstrate the utility of our in vitro system in studying interactions between chromatin-associated proteins and nucleosomal arrays.  相似文献   

18.
A model for chromatin structure.   总被引:7,自引:5,他引:2       下载免费PDF全文
A model for chromatin structure is presented. (a) Each of four histone species, H2A (IIbl or f2a2), H2B (IIb2 or f2b), H3 (III or f3) and H4 (IV or f2al) can form a parallel dimer. (b) These dimers can form two tetramers, (H2A)2(H2b)2 and (H3)2(H4)2. (C) These two tetramers bind a segment of DNA and condense it into a "C" segments. (d) The adjacent segments, termed extended or "E" segments, are bound by histone H1 (I or fl) for the major fraction of chromatin; the other "E" regions can be either bound by non-histone proteins or free of protein binding. (e) The binding of histones causes a structural distortion of the DNA which, depending upon the external conditions, may generate the formation of either an open structure with a heterogeneous and non-uniform supercoil or a compact structure with a string of beads. The model is supported by experimental data on histone-histone interaction, histone-DNA interaction and histone subunit-DNA interaction.  相似文献   

19.
20.
Histone modifications play an important role in shaping chromatin structure. Here, we describe the use of an in vitro chromatin assembly system from Drosophila embryo extracts to investigate the dynamic changes of histone modifications subsequent to histone deposition. In accordance with what has been observed in vivo, we find a deacetylation of the initially diacetylated isoform of histone H4, which is dependent on chromatin assembly. Immediately after deposition of the histones onto DNA, H4 is monomethylated at K20, which is required for an efficient deacetylation of the H4 molecule. H4K20 methylation-dependent dl(3)MBT association with chromatin and the identification of a dl(3)MBT-dRPD3 complex suggest that a deacetylase is specifically recruited to the monomethylated substrate through interaction with dl(3)MBT. Our data demonstrate that histone modifications are added and removed during chromatin assembly in a highly regulated manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号