首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spleen cells of DBA/2 mice bearing subcutaneous implants of the syngeneic tumor L5178Y induce suppression of the in vitro antibody response of normal spleen cells to sheep erythrocytes (SRBC). Cells mediating suppression are detected in the spleens of tumor-bearing mice as early as 24 hr post-implantation but are no longer detected there 15 days post-implantation. These spleen cells are nylon wool nonadherent, sensitive to anti-Thy 1.2 + C and anti-Lyt 1.1 + C, and insensitive to anti-Lyt 2.1 + C treatment. The anti-SRBC response of the unfractionated spleen cells from the tumor-bearing mice is not itself suppressed at the cell numbers used. This along with the finding that suppression occurs in the presence of spleen cells from normal mice suggest that a cell population from the normal mouse spleen is also involved in the suppression. Spleen cells from mice inoculated with irradiated (nonproliferating) L5178Y cells are similarly capable of mediating nonspecific suppression for the same limited period of time after the inoculation. In addition, spleen cells from mice stimulated with several nontumorigenic cellular antigens interact with normal spleen cells to produce suppression. These findings suggest that suppression observed in vitro with spleen cells from these tumor-bearing mice may be the result of antigen-activated cells triggering normal immunoregulatory cells.  相似文献   

2.
2 mutant mouse cells M10 and Q31 were examined for chromosomal aberrations induced by ultraviolet radiation (UV) and 4-nitroquinoline-1-oxide (4NQO), as compared with mouse lymphoma L5178Y cells. Q31 cells are UV- and 4NQO-sensitive cells isolated from L5178Y cells. M10 cells are similar but are sensitive to ionizing radiation and 4NQO. After treatment with UV or 4NQO, chromatid-type aberrations in these cell strains were induced more frequently in the first mitotic cells, at late fixation times. After UV exposure (2.4 J/m2), the maximal frequencies of chromatid-type breaks in Q31 cells were about 5 times higher than in L5178Y cells. In M10 cells such breaks were only as frequent as in L5178Y cells. After 4NQO treatment (50 ng/ml) the frequencies of chromatid-type breaks in M10 and Q31 cells were significantly higher than in L5178Y cells. From these results and those of previous studies (Takahashi et al., 1982), M10 cells may be considered hypersensitive to gamma-rays and 4NQO, but not to UV, and thus react similarly to L5178Y cells. The hypersensitivity of M10 cells to 4NQO may result from a defect in the ionizing-radiation repair mechanism as has been suggested to occur in ataxia telangiectasia (AT) cells. Q31 cells are hypersensitive to UV and 4NQO, but not to gamma-rays. Q31 cells may be considered to be deficient in a UV-like repair pathway. In conclusion, characteristics of murine M10 and Q31 cells are compared with those of human AT and xeroderma pigmentosum (XP) cells.  相似文献   

3.
The X-ray-sensitive mutant M10 and the UV-sensitive mutant Q31 of mouse lymphoma L5178Y cells are both sensitive to killing by 4-nitroquinoline-1-oxide (4NQO). Since cell hybridization experiments showed that the 4NQO sensitivities in M10 and Q31 cells behaved as codominant traits (Shiomi et al., 1982c), it is not possible to determine by complementation test whether the M10 and the Q31 mutations responsible for 4NQO sensitivities are allelic. We have obviated this difficulty by selecting double mutants that are sensitive to both X-rays and UV. From X-ray-sensitive M10 cells, two UV-sensitive mutants (XU 1 and XU 2) were isolated by a cell-suspension spotting method. XU 1 and XU 2 were found to belong to the same complementation group as Q31 (group I). Double mutants XU 1 and XU 2 were 30-37-fold more sensitive to 4NQO than parental L5178Y cells, whereas the single mutants M10 and Q31 were only 6-8-fold more sensitive to 4NQO than L5178Y cells in terms of D10 values (dose required to reduce survival to 10%). These results show that the M10-Q31-double mutations enhance 4NQO sensitivity synergistically, indicating that the M10 and the Q31 mutations relevant to 4NQO sensitivities are non-allelic. The implications of this finding are discussed.  相似文献   

4.
《Mutation Research Letters》1994,323(1-2):47-52
The mouse lymphoma (L5178Y) cell mutant M10 is defective in rejoining DNA double-strand breaks and is hypersensitive to ionizing radiation. The introduction of human chromosome 5 into M10 cells by microcell mediated chromosome transfer complemented the ionizing-radiation hypersensitivity defect of this cell line. The presence of chromosome 5 in the microcell hybrids was shown using PCR with chromosome-specific primers and fluorescence in situ hybridization. From this data we conclude that the gene that corrects the radiation hypersensitivity of M10 cells is located on chromosome 5 and tentatively assigned to the 5q14 to 5pter region. We designate this gene XRCC4L.  相似文献   

5.
We have examined the chromosomal radiosensitivities of an ionizing-radiation- and MMS-sensitive mutant (M10), and a UV- and 4NQO-sensitive mutant (Q31), isolated from mouse lymphoma L5178Y cells, with regard to killing effects. In the first mitoses after 100 R γ-irradiations, it was found that M10 cells were highly radiosensitive in terms of chromosomal aberrations accompanying longer mitotic delay (3 h); the frequencies of both chromatid-type and chromosome-type aberrations were, respectively, about 7 and 4 times higher than that of wild-type L5178Y cells. Furthermore, chromatid exchanges, particularly triradials, isochromatid breaks with sister union, and chromatid gaps and breaks were markedly enhanced at G1 phase of M10 cells. In contrast, the chromosomal radiosensitivity of Q31 cells after 100 R irradiation was similar to that of L5178Y cells. On the other hand, spontaneous aberration frequencies (overall breaks per cell) of M10 and Q31 cells were, respectively, 5.1 and 2.2 times higher than that of wild-type L5178Y cells. The chromosomal hypersensitivity to γ-rays in M10 cells is discussed in the light of knowledge obtained from ataxia telangiectasia cells.  相似文献   

6.
The observation that interferon (IFN) can suppress the NK lytic sensitivity of murine lymphomas in vitro led us to examine the consequences of this treatment on tumor behavior in vivo. Preincubation in IFN suppressed natural resistance to two lymphomas in syngeneic DBA/2 and semisyngeneic BDF1 mice in a dose-dependent manner, measured by the retention of (131I)dUrd-labeled tumor. Poly I:C enhancement of NK-mediated natural resistance in the lung, liver, and peritoneal cavity was also abolished by IFN pretreatment. IFN was, however, ineffective in altering the elimination of the IFN-resistant L1210R lymphoma when compared to its IFN-sensitive variant, L1210S. In DBA/2 mice that were made NK-deficient by treatment with cyclophosphamide or rabbit anti-asialo GM1 antiserum, or in congenitally NK-deficient bg/bg strain mice, IFN-treated tumor and control tumor were rejected equally well. This indicated that the effects of IFN were dependent on the presence of NK cells in these mice, and suggests that the IFN suppressed the sensitivity of the lymphomas to NK cell-mediated host resistance.  相似文献   

7.
Three mutagen-sensitive mutants, MS-1, M10 and Q31, were isolated from mouse L5178Y cells. MS-1 cells are sensitive to methyl methanesulfonate (MMS), M10 cells are cross-sensitive to X-rays, MMS and 4-nitroquinoline-1-oxide (4NQO); and Q31 cells are cross-sensitive to UV and 4NQO. MMS-, X-ray- and UV-sensitive markers in these mutants behaved recessively in hybrids between pairs of these mutants as in hybrids between L5178Y and these mutants as reported before (Shiomi et al., 1982b). Complementation analyses were carried out by forming hybrids between two MMS-sensitive mutants (MS-1 and M10) and between two 4NQO-sensitive mutants (M10 and Q31). MMS and 4NQO survivals were measured in these hybrid cells. MS-1 and M10 were found to belong to different complementation groups for MMS-sensitive phenotypes. The hybrid clones between M10 and Q31 were as sensitive to 4NQO as each of the mutants, indicating codominance of 4NQO sensitivity in these mutants. The hybrids constructed with L5178Y and three mutants were stable as to their chromosome constitution for 100 days of cultivation without selective pressure. From the segregation studies on these hybrids, it is concluded that neither the X-ray-sensitive mutation in M10 nor the UV-sensitive mutation in Q31 is located on the X chromosome.  相似文献   

8.
Using a segregation analysis we have determined that the cross-reactive response to the DBA/2 tumor P815 by CTL from BALB/c mice immunized with a BALB/c plasmacytoma (MOPC-167) is controlled by a single gene. The gene responsible is closely linked to the dilute coat color locus on chromosome 9. In contrast, the cross-reactive response to the DBA/2 tumor L5178Y by DBA/2 anti-MOPC-167 CTL appears to be controlled by two or more genes.Abbreviations used in this paper BXD RI C57BL/6 × DBA/2 recombinant inbred - CD2F1 (BALB/c × DBA/2)F1 - CTL cytotoxic thymus-derived lymphocyte - IUdR 5 iododeoxyuridine - PEC peritoneal exudate cell  相似文献   

9.
The radiation-sensitive mutant M10 of mouse lymphoma L5178Y cells was examined for its ability to rejoin DNA single-strand breaks induced by gamma-rays. The alkaline sucrose gradient sedimentation analysis revealed that M10 cells repaired single-strand breaks but simultaneously produced increasing amounts of small DNA fragments with time of postirradiation incubation, something which was not observed in L5178Y cells. Since small fragments did not appear in M10 cells irradiated at room temperature, DNA fragmentation may result from cold treatment during irradiation followed by incubation at 37 degrees C. This indicates that the cold susceptibility is characteristic of M10 cells and is not related to radiation sensitivity of this mutant. This conclusion is supported by the finding that no DNA degradation takes place after cold treatment with a subsequent incubation in the other radiosensitive mutant LX830 that belongs to the same complementation group as M10.  相似文献   

10.
Adriamycin was found to be both mutagenic and clastogenic to L5178Y/TK(+/-)-3.7.2C mouse lymphoma cells. A dose of only 5 ng/ml (survival = 62% or 67%) gave an induced TK mutant frequency of 307 or 296 per 10(6) survivors in two separate experiments. This dose was also clastogenic, inducing 20 chromosome aberrations/100 cells analyzed. The majority of the mutants were small-colony mutants, indicating that adriamycin likely acts primarily by a clastogenic mechanism.  相似文献   

11.
A number of polyamine (PA) derivatives of thiosemicarbazone of 1,3-dichloroacetone (TDA) have been prepared and their effect on growth in vivo of tumorigenic but not metastatic cell strain (LY-R) of mouse lymphoma L5178Y has been investigated. Polyamine derivatives of TDA (PDT) were injected i.p. every third day (4 times, 10 or 25 mg/kg per injection) into DBA/2 mice inoculated i.p. or s.c. with LY-R cells. It has been found that disubstituted putrescine (Put), spermidine (Spd) and spermine (Spm) derivatives TDA exhibit a prometastatic activity as indicated by the appearance of solid tumor foci in subcutaneous tissues, liver and spleen. This activity depends mainly on the structure of the PA fragment and the presence of TDA. An increase in lipid bound sialic acid content after treating LY-R cells in vitro and in vivo with a Spm derivative has been found. These findings suggest that disubstituted PA derivatives of TDA and LY-R cells may be a useful model for investigation of the final steps in formation of metastases by lymphoma cells.  相似文献   

12.
Summary Previous experiments have demonstrated a temporal relationship between the decline of cytotoxic T lymphocyte (CTL) activity in the peritoneal cavity of DBA/2 mice harboring L5178Y cells in a tumor-dormant state and the appearance of ascitic tumors. Some tumor-dormant mice remain clinically normal for many weeks after the decline of CTL activity, and this activity can be rapidly restimulated by an IP inoculation of irradiated L5178Y cells. We report here that the peritoneal cells from many tumor-dormant mice can be stimulated to cytolytic activity in vitro when cultured for 4 days either with or without the addition of irradiated L5178Y cells. Peritoneal cell populations which cannot be stimulated in vitro can suppress the generation of CTL in those populations which can be stimulated. The tumor-dormant state may terminate when suppressor cells in the peritoneal cavity of tumor-dormant mice inhibit the generation of CTL activity and permit tumor cells to produce an ascitic tumor. Abbreviations used in this paper: C, complement; CTL, cytotoxic thymus-derived lymphocyte; PC, peritoneal cells; DPC, days post challange; NAD, nonadherent; SC, subcutaneous; IP, intraperitoneal  相似文献   

13.
To determine the mutual relationships between cell survival and induction of sister-chromatid exchanges (SCEs) as well as chromosomal aberrations (CAs), mutagen-induced SCEs and CAs were analyzed in an ionizing radiation-sensitive mutant (M10) and an alkylating agent-sensitive mutant (MS 1) isolated from mouse lymphoma L5178Y cells. The levels of CA induction in both mutants strictly corresponded to the sensitivity to lethal effects of mutagens, except that caffeine-induced CAs in M10 are considerably lower than those in L5178Y. The results clearly indicate that except for caffeine-induced CAs in M10, mutagen-induced lethal lesions are responsible for CA induction. In contrast, SCE induction in mutants was complicated. In M10, hypersensitive to killing by gamma-rays, methyl methanesulfonate (MMS), and 4-nitroquinoline 1-oxide (4NQO), but not sensitive to UV or caffeine, the frequency of SCEs induced by gamma-rays was barely higher than that in L5178Y, and the frequencies of MMS- and UV-induced SCEs were similar to those in L5178Y, but 4NQO- and caffeine-induced SCEs were markedly lower than those in L5178Y. MS 1, which is hypersensitive to MMS and caffeine, but not sensitive to UV or 4NQO, responded to caffeine with an enhanced frequency of SCEs and had a normal frequency of MMS-induced SCEs, but a reduced frequency of UV- and 4NQO-induced SCEs. Thus, susceptibility to SCE induction by mutagens is not necessarily correlated with sensitivity of mutants to cell killing and/or CA induction by mutagens. Furthermore, the spontaneous levels of SCEs are lower in M10 and higher in MS 1 than that in L5178Y (Tsuji et al., 1987). Based on these results, we speculate that M10 may be partially defective in the processes for the formation of SCEs caused by mutagens. On the other hand, MS 1 may modify SCE formation-related lesions induced by UV and 4NQO to some repair intermediates that do not cause SCE formation. In addition, MMS-induced lethal lesions in MS 1 may not be responsible for SCE induction whereas caffeine-induced lethal lesions are closely correlated with SCE induction. Thus, the lesions or mechanisms involved in SCE production are in part different from those responsible for cell lethality or CA production.  相似文献   

14.
15.
Previous experiments have demonstrated a temporal relationship between the decline of cytotoxic T lymphocyte (CTL) activity in the peritoneal cavity of DBA/2 mice harboring L5178Y cells in a tumor-dormant state and the appearance of ascitic tumors. Some tumor-dormant mice remain clinically normal for many weeks after the decline of CTL activity, and this activity can be rapidly restimulated by an IP inoculation of irradiated L5178Y cells. We report here that the peritoneal cells from many tumor-dormant mice can be stimulated to cytolytic activity in vitro when cultured for 4 days either with or without the addition of irradiated L5178Y cells. Peritoneal cell populations which cannot be stimulated in vitro can suppress the generation of CTL in those populations which can be stimulated. The tumor-dormant state may terminate when suppressor cells in the peritoneal cavity of tumor-dormant mice inhibit the generation of CTL activity and permit tumor cells to produce an ascitic tumor.  相似文献   

16.
Three classes of TFTr variants of L5178Y/TK+/- -3.7.2C mouse lymphoma cells can be identified--large colony (lambda), small colony (sigma), and tiny colony (tau). The sigma and lambda mutants are detectable in the routine mutagenesis assay using soft agar cloning. The tau mutants are extremely slow growing and are quantitated only in suspension cloning in microwells. Variants of all three classes have been analyzed in the process of evaluating the usefulness of the thymidine kinase locus in L5178Y/TK+/- mouse lymphoma cells for detecting induced mutational damage. 150 of 152 variants from mutagen treated cultures and 163 of 168 spontaneous mutants were TFTr when rechallenged approximately 1 week after isolation (3 weeks after induction). All of the 41 mutants assayed for enzyme activity were TK-deficient. The sigma and tau phenotypes were found to correlate with slow cellular growth rates (doubling time greater than 12 h), rather than from effects of the TFT selection or mutagen toxicity. Cytogenetic analysis of sigma mutants approximately 3 weeks after induction shows an association between the sigma phenotype and readily observable (at the 230-300 band level) chromosomal abnormalities (primarily translocations involving that chromosome 11 carrying the functional TK gene) in 30 of 51 induced mutants studied. Using an early clonal analysis of mutants (approximately 2 weeks after induction) 28 of 30 sigma mutants showed chromosome 11 rearrangements. All lambda mutants studied (17 of 17 evaluated 3 weeks after induction and 8 of 8 evaluated 2 weeks after induction) showed normal karyotypes (at the 230-300 band resolution level), including the chromosome 11s. These observations support the hypothesis that sigma (and likely tau) mutants represent chromosomal mutations and lambda mutants represent less extensive mutations affecting the TK locus. The inclusion of sigma mutants in the total induced mutant frequency, as well as distinguishing them as a separate subpopulation of TK-deficient mutants, is, therefore, essential in obtaining maximum utility of the information provided by the L5178Y/TK+/- mouse lymphoma assay.  相似文献   

17.
It was previously reported that the establishment of the L5178Y cell tumor-dormant state in DBA/2 mice is mediated principally by a peritoneal cytolytic T-cell response that reaches peak levels 4 days after L5178Y cell challenge, lyses more than 99% but less than 100% of peritoneal L5178Y cells, and gradually wanes to background levels by 40–70 days postchallenge (DPC). At this time the majority of mice are clinically normal, and contain a relatively small number of L5178Y cells in the peritoneal cavity. During the tumor-dormant state, mice that harbor more than 104 L5178Y cells contain peritoneal macrophage-mediated cytolytic activity. We report here that tumor-dormant mice that contain fewer than 104 peritoneal L5178Y cells also produce cytolytic activity in vitro, but that it is synergistic, in that the cytolytic activity of adherent (AD) peritoneal cells (PEC) and nonadherent (NAD) PEC cultured together is greater than the additive lysis produced by these cell populations when cultured separately. This synergistic cytolytic activity is: (1) effector cell density dependent, (2) dependent on the tumor-dormant status of the NAD and AD PEC donor mice, (3) protracted in its kinetics during a 48-hr in vitro assay, and (4) dependent on an interaction between NAD T cells and AD phagocytic macrophages. The consistent detection of this in vitro-assayed cytolytic activity in PEC of tumor-dormant mice which harbor small endogenous tumor burdens suggests that it reflects an in vivo cytotoxic effector mechanism involved in the long-term maintenance of the tumor-dormant state.  相似文献   

18.
Summary We have studied the rather paradoxical phenomenon of the growth of an antigenic tumor in an immunocomponent host. This phenomenon was studied by comparing (a) the lymphocyte reactivity and (b) the macrophage cytotoxicity, during SL2 growth in DBA/2 mice (SL2-bearing mice) and in DBA/2 mice immunized against SL2 tumor cells (SL2-immune mice). Immune mice rejected a challenge of tumor cells. The immune T-lymphocytes rendered macrophages cytotoxic (arming) and were able to transfer tumor resistance to naive animals. Nonimmunized mice did not reject a challenge of SL2 cells. In these tumor-bearing mice various forms of immune reactivity were tested. Lymphocytes with the capacity to arm macrophages could not be found in the lymphoid organs. However, lymphocytes isolated from the tissue directly surrounding the subcutaneous SL2 tumor could arm macrophages in vitro.Shortly after subcutaneous tumor grafting cytotoxic macrophages were found in the peritoneal cavity. In the serum macrophage arming factors were detected that rendered macrophages cytotoxic in vitro. This cytotoxicity of the peritoneal macrophages and the presence of macrophage arming factors in the serum showed a similar biphasic pattern. The first phase of cytotoxicity between day 3 and 8 after tumor grafting was tumor (SL2) specific. The second phase from day 12 and onwards was not tumor specific. During the first 4 days after SL2 grafting the DBA/2 mice expressed a specific concomitant immunity to a second tumor graft. Then 7 or more days after grafting the first SL2 tumor, the concomitant immunity was nonspecific as the growth of a second SL2 tumor graft and a L5178Y (DBA/2) tumor graft were inhibited. In addition, the immune suppressive activity of serum and lymphocytes was tested. Neither serum nor lymphocytes from SL2-bearing mice suppressed the macrophage arming capacity of SL2 immune lymphocytes. Lymphocytes from tumor-bearing mice did not inhibit the capacity of SL2-immune lymphocytes to transfer resistance to naive animals. On the contrary, lymphocytes obtained from SL2-bearing mice 14 days after SL2 grafting transfered tumor resistance in a Winn-type assay. These data suggest that the growth of an antigenic tumor is due to the inability of the immune system to mount an effective antitumor effector cell population during tumor growth, rather than an immune suppression of the antitumor reactivity, as a limited immune reactivity could be detected in tumor-bearing mice, whereas immune suppression could not be detected.  相似文献   

19.
Mutagenesis assays at the thymidine kinase (TK) locus in L5178Y mouse lymphoma cells frequently yield mutant colonies with a bimodal size distribution. The objectives of this study were to determine whether a relationship exists between mutant colony size and chromosomal aberrations and whether the colony-size distributions obtained from this assay can indicate the clastogenic activity of a test chemical. Cells from 8 different types of L5178Y mouse lymphoma cell colonies were examined for chromosomal abnormalities within 10 cell generations after colony isolation. The colonies included small (sigma) and large (lambda) unselected cell (UC) and trifluorothymidine-resistant (TFTr) colonies derived from TK +/- cell cultures treated with the solvent dimethyl sulfoxide (DMSO) or hycanthone methanesulfonate (HYC). Chromosome abnormalities were present in cells from 12% (7/60) of the UC colonies, but there was no apparent relationship between colony diameter and the presence of chromosomal abnormalities. Abnormalities affecting chromosome 11, which is believed to be the site of the TK gene, were not observed in cells from UC colonies. Abnormalities affecting chromosome 11 were observed only in cells from sigma-TFTr colonies irrespective of whether they were spontaneous (5/15 colonies) or induced by HYC (4/15 colonies). Overall, 30% (9/30) of sigma-TFTr colonies had cells with an abnormal chromosome 11 and 10% (3/30) had abnormalities affecting other chromosomes. Abnormalities affecting chromosome 11 were not observed in cells from lambda-TFTr colonies (0/30 colonies). The observation of only 30% of sigma-TFTr colonies with chromosome damage affecting chromosome 11 indicates that other mechanisms, in addition to chromosome damage at the level of resolution used in this study (i.e., 200-300 chromosome bands). contribute to small TFTr colony size.  相似文献   

20.
Three mutagen-sensitive mutants, MS-1, M10 and Q31, have been isolated from mouse L5178Y cells. MS-1 cells are sensitive to methyl methanesulfonate (MMS), M10 cells are cross-sensitive to X-rays, MMS and 4-nitroquinoline 1-oxide (4NQO), and Q31 cells are cross-sensitive to UV and 4NQO. Lines resistant to 6-thioguanine (TGr) and 5-bromo-2'-deoxyuridine (BUr) were isolated from L5178Y and these three mutagen -sensitive mutants. All the TGr lines were sensitive to 5-bromo-2'-deoxyuridine and HAT medium and all the BUr lines were sensitive to 6-thioguanine and HAT medium. The hybrids homozygous for the mutagen-sensitive markers showed nearly the same sensitivity to UV, 4NQO, X-rays and MMS as their parental TGr and BUr lines. The hybrids constructed by fusing L5178Y BUr and TGr lines from each of MS-1, M10 and Q31 displayed the normal UV, X-ray and MMS resistancy of L5178Y cells. Thus the UV-, X-ray- and MMS-sensitive markers in MS-1, M10 and Q31 were recessive in somatic cell hybrids. The 4NQO-sensitive phenotype, however, behaved codominantly in somatic cell hybrids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号