首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Role of spindle microtubules in the control of cell cycle timing   总被引:14,自引:10,他引:4       下载免费PDF全文
Sea urchin eggs are used to investigate the involvement of spindle microtubules in the mechanisms that control the timing of cell cycle events. Eggs are treated for 4 min with Colcemid at prophase of the first mitosis. No microtubules are assembled for at least 3 h, and the eggs do not divide. These eggs show repeated cycles of nuclear envelope breakdown (NEB) and nuclear envelope reformation (NER). Mitosis (NEB to NER) is twice as long in Colcemid-treated eggs as in the untreated controls. Interphase (NER to NEB) is the same in both. Thus, each cycle is prolonged entirely in mitosis. The chromosomes of treated eggs condense and eventually split into separate chromatids which do not move apart. This "canaphase" splitting is substantially delayed relative to anaphase onset in the control eggs. Treated eggs are irradiated after NEB with 366-nm light to inactivate the Colcemid. This allows the eggs to assemble normal spindles and divide. Up to 14 min after NEB, delays in the start of microtubule assembly give equal delays in anaphase onset, cleavage, and the events of the following cell cycle. Regardless of the delay, anaphase follows irradiation by the normal prometaphase duration. The quantity of spindle microtubules also influences the timing of mitotic events. Short Colcemid treatments administered in prophase of second division cause eggs to assemble small spindles. One blastomere is irradiated after NEB to provide a control cell with a normal-sized spindle. Cells with diminished spindles always initiate anaphase later than their controls. Telophase events are correspondingly delayed. This work demonstrates that spindle microtubules are involved in the mechanisms that control the time when the cell will initiate anaphase, finish mitosis, and start the next cell cycle.  相似文献   

2.
Stamen hair cells of Tradescantia exhibit remarkable precision in the timing of their mitotic events. This precision is altered dramatically with treatment in 50 microM to 1 mM LiCl, an inhibitor of the polyphosphoinositide cycle. Mitotic progression is altered as a function of the time of treatment with LiCl. If cells are treated during late prophase, greater than 80% fail to enter metaphase. Most of the cells that undergo nuclear envelope breakdown become arrested in metaphase. Treatment with LiCl earlier in prophase also results in metaphase arrest. Metaphase arrest can be reversed by the addition of 10 microM myo-inositol or 100 microM CaCl2 to the extracellular medium. The timing of reversal by myo-inositol takes 10 to 14 min while CaCl2 promotes anaphase onset in 2 to 5 min. The difference in kinetics for reversal between these two treatments suggests that myo-inositol addition overrides a biochemical pathway while Ca2+ addition supplants a phosphoinositide-mediated rise in the cation that may be necessary for anaphase onset. Buffer without myo-inositol or CaCl2 is insufficient for reversal. If the cells are treated with LiCl in mid-late-metaphase, at least 5 min prior to the expected time of anaphase onset, sister chromatids split at the normal time, 33 +/- 4 min after nuclear envelope breakdown, but further chromosome separation is arrested. Anaphase chromosome movement can be restored by treatment with either 10 microM myo-inositol or 100 microM CaCl2 in the medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The normally predictable duration of metaphase in stamen hair cells from the spiderwort, Tradescantia virginiana, is shortened significantly by treatment during prometaphase with either ruthenium red or Bay K-8644. Ruthenium red is an inhibitor of Ca2+ translocation and Bay K-8644 is a Ca2+-channel agonist. Their action on mitotic progression appears to involve a rise in the cytosolic Ca2+ level that in turn has a pronounced effect on the duration of metaphase. The timing of addition of ruthenium red for accelerated progression through metaphase is less critical than that for Bay K-8644 which will promote metaphase progression only if added 0 to 12 min after nuclear envelope breakdown. In contrast, ruthenium red can be added at any time from approximately 10 min prior to nuclear envelope breakdown up to 25 min afterward. A reduction of extracellular Ca2+ is sufficient by itself to prolong the duration of metaphase in stamen hair cells, but the duration of metaphase by ruthenium red or Bay K-8644 is significantly shortened in identical solutions with Ca2+ buffered at levels greater than 1 microM. Metaphase progression rates with either agent are independent of changes in extracellular Mg2+ levels. Correlated with the precocious entry into anaphase was rapid formation of the spindle and a marked reduction in spindle rotation during metaphase. Interestingly, we observed a modest increase in the rate of anaphase chromosome separation, but the appearance of cell plate vesicles at the site of incipient cell plate formation occurred normally approximately 19 min after anaphase onset. Similarly, the initial appearance of cell plate vesicles in Bay K-8644 was normal, approximately 19 min after the onset of anaphase. These results further implicate shifts in cytosolic Ca2+ in the regulation of mitotic events.  相似文献   

4.
Nifedipine reversibly arrests mitosis in stamen hair cells of tradescantia   总被引:6,自引:0,他引:6  
Mitotic stamen hair cells of Tradescantia virginiana (cv. Zwanenburg Blue) become arrested in metaphase following a 30-min treatment with 10 to 100 microM nifedipine, a Ca2+-channel entry blocker. The time interval between nuclear envelope breakdown and anaphase onset in untreated cells is approximately 33 min +/- 4 min; nifedipine extends this "metaphase transit time" beyond 70 min. Nifedipine can be photoreversed in situ by exposure to 365 nm light. UV illumination inactivates the drug, its inhibitory effect on Ca2+ is abolished, and cells arrested in metaphase enter anaphase within 3 to 18 min of UV exposure if CaCl2 is present in the medium. The interval between UV illumination and anaphase onset is inversely related to the extracellular concentration of CaCl2. If CaCl2 is not added to the medium, the interval between UV exposure and anaphase onset is usually longer than 18 min. The sole addition of 100 microM CaCl2 to the medium is insufficient to reverse nifedipine inhibition; unless the cells are exposed to UV light, anaphase will not commence. The threshold concentration of free Ca2+ for rapid anaphase onset (less than 10 min after UV photoreversal) is between 1 and 10 microM. These results suggest that an influx of Ca2+ from the extracellular medium to the cytosolic compartment is necessary for normal progression from metaphase to anaphase and that this influx may serve as a trigger for chromosome separation.  相似文献   

5.
Global Ca2+ transients have been observed to precede nuclear envelope breakdown and the onset of anaphase in Swiss 3T3 fibroblasts in 8% (vol/vol) FBS. The occurrence of these Ca2+ transients was dependent on intracellular stores. These Ca2+ transients could be (a) abolished by serum removal without halting mitosis, and (b) eliminated by increasing intracellular Ca2+ buffering capacity through loading the cells with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) buffer, via the tetra(acetoxymethyl) ester, without hindering the transition into anaphase. Microinjection of sufficient concentrations of BAPTA buffer could block nuclear envelope breakdown. Pulses of Ca2+ generated by flash photolysis of intracellularly trapped nitr-5, a "caged" Ca2+, could precipitate precocious nuclear envelope breakdown in prophase cells. In metaphase cells, photochemically generated Ca2+ pulses could cause changes in the appearance of the chromosomes, but the length of time required for cells to make the transition from metaphase to anaphase remained essentially unchanged regardless of whether a Ca2+ pulse was photoreleased during metaphase. The results from these photorelease experiments were not dependent on the presence of serum in the medium. Discharging intracellular Ca2+ stores with ionomycin in the presence of 1.8 mM extracellular Ca2+ doubled the time for cells to pass from late metaphase into anaphase, whereas severe Ca2+ deprivation by treatment with ionomycin in EGTA-containing medium halted mitosis. Our results collectively indicate that Ca2+ is actively involved in nuclear envelope breakdown, but Ca2+ signals are likely unnecessary for the metaphase-anaphase transition in Swiss 3T3 fibroblasts. Additional studies of intracellular Ca2+ concentrations in mitotic REF52 and PtK1 cells revealed that Ca2+ transients are not observed at all mitotic stages in all cells. The absence of observable global Ca2+ transients, where calcium buffers can block and pulses of Ca2+ can advance mitotic stages, may imply that the relevant Ca2+ movements are too local to be detected.  相似文献   

6.
Calcium dependence of bleb formation and cell death in hepatocytes   总被引:5,自引:0,他引:5  
Calcium dependence of bleb formation and cell death was evaluated in rat hepatocytes following ATP depletion by metabolic inhibition with KCN and iodoacetate ('chemical hypoxia'). Cytosolic free Ca2+ was measured in single cells by ratio imaging of Fura-2 fluorescence using multiparameter digitized video microscopy. Cells formed surface blebs within 10 to 20 minutes after chemical hypoxia and most cells lost viability within an hour. An increase of cytosolic free Ca2+ was not required for bleb formation to occur. One to a few minutes prior to the onset of cell death, free Ca2+ increased rapidly in high Ca2+ buffer (1.2 mM) but not in low Ca2+ buffer (less than 1 microM). In either buffer, the rate of cell killing was the same. As the onset of cell death was approached in both high and low Ca2+ buffers, Fura-2 began to leak from the cells at an accelerating rate indicating rapidly increasing plasma membrane permeability. In high Ca2+ buffer, cytosolic free Ca2+ increased in parallel with dye leakage. No regional changes in cytosolic free Ca2+ were observed during this metastable period of increased membrane permeability. In many experiments, actual rupture of cell surface blebs could be observed which led to micron-size discontinuities of the cell surface and cell death. We conclude that a metastable period characterized by increasing plasma membrane permeability marked the onset of cell death in cultured hepatocytes which culminated in rupture of a cell surface bleb. An increase of cytosolic free Ca2+ was not required for the metastable state to develop or cell death to occur.  相似文献   

7.
D2O induced alterations of mitosis in PtK1 cells   总被引:1,自引:0,他引:1  
Deuterium oxide (D2O) was applied to PtK1 cells to assess its effect on mammalian mitosis. Cells exposed to culture medium containing up to 50% D2O were able to enter and complete mitosis, but the duration of mitosis was increased proportionally to the concentration of D2O applied. Cells exposed to 50% D2O showed increases of more than 300% for the interval between nuclear envelope breakdown and anaphase onset, and approximately 65% for the interval between anaphase onset and initial furrowing. At a concentration of 80%, D2O acted as an inhibitor of mitosis; after 8 h exposure to this concentration, cultures showed an increase in the proportion of mulinucleate cells and an absence of mitotic figures. When applied early in anaphase, 80% D2O effectively slowed chromosome separation, prolonging anaphase for more than 60 min. Normal chromosome motion was restored when medium containing D2O was replaced with control medium. Mitotic chromosomes remained condensed throughout prolonged anaphase intervals. Immunofluoresence examination of spindles stained using a monoclonal anti-tubulin revealed no pronounced increase in microtubule polymerization after exposure of cells to 20-80% D2O.  相似文献   

8.
Changes in free calcium concentration [( Ca]) have been detected during anaphase in stamen hair cells of Tradescantia. Cells have been injected iontophoretically with the calcium sensitive metallochromic dye arsenazo III and changes in differential absorbance have been measured using a spinning wheel microspectrophotometer. The results obtained on single cells progressing from midmetaphase through to cytokinesis show that the free [Ca] first begins in increase after the initial separation of the sister chromosomes marking the onset of anaphase. The increase continues for 10-15 min while the chromosomes move to the poles; thereafter the [Ca] declines with the cell plate appearing about the time that the ion returns to its basal level. The close temporal correlation firstly between the rise in [Ca] and the breakdown of spindle microtubules (MTs) during anaphase and secondly, between the subsequent fall in [Ca] and the emergence of the MT-containing phragmoplast provides evidence consistent with the idea that endogenous fluctuations in [Ca] control the disassembly/assembly of MTs during mitosis.  相似文献   

9.
Anaphase, mitotic exit, and cytokinesis proceed in rapid succession, and while mitotic exit is a requirement for cytokinesis in yeast, it may not be a direct requirement for furrow initiation in animal cells. In this report, we physically manipulated the proximity of the mitotic apparatus (MA) to the cell cortex in combination with microinjection of effectors of the spindle checkpoint and CDK1 activity to determine how the initiation of cytokinesis is coupled to the onset of anaphase and mitotic exit. Whereas precocious contact between the MA and the cell surface advanced the onset of cytokinesis into early anaphase A, furrowing could not be advanced prior to the metaphase-anaphase transition. Additionally, while cells arrested in anaphase could be induced to initiate cleavage furrows, cells arrested in metaphase could not. Finally, activation of the mitotic checkpoint in one spindle of a binucleate cell failed to arrest cytokinesis induced by the control spindle but did inhibit the formation of furrows between the arrested MA and the control, nonarrested MA. Our experiments suggest that the competence of the mitotic apparatus to initiate cytokinesis is not dependent on cyclin degradation but does require anaphase-promoting complex (APC) activity and, thus, inactivation of the mitotic checkpoint.  相似文献   

10.
Using calcium-sensitive dyes together with their dextran conjugates and confocal microscopy, we have looked for evidence of localized calcium signaling in the region of the nucleus before entry into mitosis, using the sea urchin egg first mitotic cell cycle as a model. Global calcium transients that appear to originate from the nuclear area are often observed just before nuclear envelope breakdown (NEB). In the absence of global increases in calcium, confocal microscopy using Calcium Green- 1 dextran indicator dye revealed localized calcium transients in the perinuclear region. We have also used a photoinactivatable calcium chelator, nitrophenyl EGTA (NP-EGTA), to test whether the chelator- induced block of mitosis entry can be reversed after inactivation of the chelator. Cells arrested before NEB by injection of NP-EGTA resume the cell cycle after flash photolysis of the chelator. Photolysis of chelator triggers calcium release. TreatmenT with caFfeine to enhance calcium-induced calcium release increases the amplitude of NEB- associated calcium transients. These results indicate that calcium increases local to the nucleus are required to trigger entry into mitosis. Local calcium transients arise in the perinuclear region and can spread from this region into the cytoplasm. Thus, cell cycle calcium signals are generated by the perinuclear mitotic machinery in early sea urchin embryos.  相似文献   

11.
Cell cycle in various types of cells and in early embryos is often accompanied by transient changes in the concentration of free cytosolic calcium. In the present study, using fluorescent indicator fura-2, we demonstrate that Ca(2+) oscillates cyclically with an amplitude of about 100 nM and a period of mitotic cycle in cell-free Xenopus egg cycling extracts. It peaks in early metaphase just preceding mitotic reactivation of Cdc2 kinase and MAPK and reaches a minimum in interphase. The source of Ca(2+) in the extracts is a particulate fraction containing egg intracellular Ca(2+) stores, since the addition of a calcium-mobilizing second messenger, inositol 1,4,5-trisphosphate (IP3), induced a transient increase in Ca(2+). The inclusion of heparin, an IP3 receptor antagonist, or ultrafiltration of the extracts prevented Ca(2+)-releasing activity of IP3. The depletion of Ca(2+) in the extracts by the calcium chelator BAPTA resulted in the blockade of cell cycle at different stages, depending on the time of drug administration. The addition of BAPTA late in interphase blocked cell cycle at mitotic entry in prophase, whereas its application in anaphase or telophase blocked the extracts in early interphase. BAPTA administration in metaphase before transition to anaphase brought about a metaphase-like arrest in the cycling extracts. Inhibition of IP3-induced calcium release by heparin also arrested cell cycle progression in the cycling extracts.  相似文献   

12.
The role of calcium ions during mitosis   总被引:25,自引:2,他引:23  
Calcium-containing solutions were microinjected into dividing PtK1 cells to assess the effect of calcium ion concentration on the morphology and physiology of the mitotic spindle. Solutions containing 50 microM or more CaCl2 are immediately and irreversibly toxic to PtK1 cells. Those containing 5-10 microM CaCl2 cause reversible reduction in spindle birefringence followed by normal anaphase and cytokinesis. Microinjection of 5 microM or less CaCl2 into anaphase PtK1 cells has no detectable effect on the rate or extent of chromosome movement. Metaphase cells tend to enter anaphase 4-5 min after injection with 1-10 microM CaCl2, compared with an average of 16 min after injection with calcium-free buffer. Reducing the intracellular calcium concentration by injection of EGTA-CaCl2 buffers increases the lag between injection and anaphase to 20 min or more. Microinjection of calcium solutions does not promote precocious chromatid separation in nocodazole-arrested metaphase cells, indicating that the increase in calcium concentration does not induce centromere separation directly. An increase in the concentration of free calcium ions during metaphase appears to stimulate the onset of anaphase. Such an increase, regulated by the cell itself, may contribute to the initiation of chromosome separation in mammalian cells.  相似文献   

13.
Microtubule-targeting cancer therapies interfere with mitotic spindle dynamics and block cells in mitosis by activating the mitotic checkpoint. Cells arrested in mitosis may remain arrested for extended periods of time or undergo mitotic slippage and enter interphase without having separated their chromosomes. How extended mitotic arrest and mitotic slippage contribute to subsequent cell death or survival is incompletely understood. To address this question, automated fluorescence microscopy assays were designed and used to screen chemical libraries for modulators of mitotic slippage. Chlorpromazine and triflupromazine were identified as drugs that inhibit mitotic slippage and SU6656 and geraldol as chemicals that stimulate mitotic slippage. Using the drugs to extend mitotic arrest imposed by low concentrations of paclitaxel led to increased cell survival and proliferation after drug removal. Cells arrested at mitosis with paclitaxel or vinblastine and chemically induced to undergo mitotic slippage underwent several rounds of DNA replication without cell division and exhibited signs of senescence but eventually all died. By contrast, cells arrested at mitosis with the KSP/Eg5 inhibitor S-trityl-L-cysteine and induced to undergo mitotic slippage were able to successfully divide and continued to proliferate after drug removal. These results show that reinforcing mitotic arrest with drugs that inhibit mitotic slippage can lead to increased cell survival and proliferation, while inducing mitotic slippage in cells treated with microtubule-targeting drugs seems to invariably lead to protracted cell death.  相似文献   

14.
N Morin  A Abrieu  T Lorca  F Martin    M Dorée 《The EMBO journal》1994,13(18):4343-4352
It has been shown, using spindles assembled in vitro in extracts containing CSF (the cytostatic factor responsible for arresting unfertilized vertebrate eggs at metaphase), that onset of anaphase requires Ca(2+)-dependent activation of the ubiquitin-dependent proteolytic pathway that destroys both mitotic cyclins and an unknown protein responsible for metaphase arrest (Holloway et al., 1993, Cell, 73, 1382-1402). We showed recently that Ca2+/calmodulin-dependent protein kinase II (CaM KII) activates the ubiquitin-dependent cyclin degradation pathway in CSF extracts (Lorca et al., 1993, Nature, 366, 270-273), but did not investigate its possible effect on sister chromatid segregation. In this work we identify CaM KII as the only target of Ca2+ in inducing anaphase in CSF extracts, and further show that transition to anaphase does not require the direct phosphorylation of metaphase spindle components by CaM KII. A possible interpretation of the above results could have been that the ubiquitin-dependent degradation pathway is required for onset of anaphase only when spindles are clamped at metaphase due to CSF activity, and not in the regular cell cycle that occurs in the absence of CSF activity. We ruled out this possibility by showing that competitive inhibition of the ubiquitin-dependent degradation pathway still prevents the onset of anaphase in cycling extracts that lack CSF and do not require Ca2+ for sister chromatid separation.  相似文献   

15.
We have treated living, intact stamen hair cells from the spiderwort plant, Tradescantia virginiana, with 0.5 microgram/ml or 60 micrograms/ml 1,2-dioctanoylglycerol, a potent and permeant activator of protein kinase C, and have observed the rates of progression of mitosis from prophase through anaphase. We have found that in addition to the concentration used, the time of initial treatment with 1,2-dioctanoylglycerol defines the response by the cells. The cells rapidly undergo nuclear envelope breakdown when this diglyceride is added in very late prophase, 0 to approximately 8 min prior to the time of normal nuclear envelope breakdown. Anaphase onset occurs 28 min after nuclear envelope breakdown, rather than after the 33 min interval observed in untreated cells. Rapid progression through metaphase is also observed if cells are treated with 0.5 microgram/ml 1,2-dioctanoylglycerol during prometaphase, up to 15 min after nuclear envelope breakdown. The addition of 0.5 microgram/ml 1,2-dioctanoylglycerol in late metaphase, approximately 26 min after nuclear envelope breakdown, results in sister chromatid separation slightly ahead of its normal time, 33 min after nuclear envelope breakdown, and in precocious cell plate vesicle aggregation, 3-5 min earlier than that observed in untreated cells. Treatment of cells with 60 micrograms/ml of 1,2-dioctanoylglycerol at any point during the interval from 0 to approximately 5 min prior to nuclear envelope breakdown results in precocious entry into anaphase. If cells are treated with either 0.5 microgram/ml or 60 micrograms/ml 1,2-dioctanoylglycerol earlier than 20 min before nuclear envelope breakdown, they do not enter mitosis, but instead revert to interphase without dividing. When 1,2-dioctanoylglycerol is added at other times during mitosis, the rate of subsequent mitotic progression is dramatically slowed; the cells require greater than 55 min to progress from nuclear envelope breakdown to anaphase onset, though once in anaphase, the cells progress onward to cytokinesis at normal rates. Treatments o of cells with 1,3-dioctanoylglycerol at any point during prophase, prometaphase, or metaphase are without effect on the rate of subsequent mitotic progression. The shifts in response by cells treated at specific times with 1,2-dioctanoylglycerol during mid- and late metaphase may be indicative of the existence of one or more regulatory switch points (i.e., checkpoints) just prior to anaphase onset.  相似文献   

16.
The spindle assembly checkpoint prevents cells whose spindles are defective or chromosomes are misaligned from initiating anaphase and leaving mitosis. Studies of Xenopus egg extracts have implicated the Erk2 mitogen-activated protein kinase (MAP kinase) in this checkpoint. Other studies have suggested that MAP kinases might be important for normal mitotic progression. Here we have investigated whether MAP kinase function is required for mitotic progression or the spindle assembly checkpoint in vivo in Xenopus tadpole cells (XTC). We determined that Erk1 and/or Erk2 are present in the mitotic spindle during prometaphase and metaphase, consistent with the idea that MAP kinase might regulate or monitor the status of the spindle. Next, we microinjected purified recombinant XCL100, a Xenopus MAP kinase phosphatase, into XTC cells in various stages of mitosis to interfere with MAP kinase activation. We found that mitotic progression was unaffected by the phosphatase. However, XCL100 rendered the cells unable to remain arrested in mitosis after treatment with nocodazole. Cells injected with phosphatase at prometaphase or metaphase exited mitosis in the presence of nocodazole—the chromosomes decondensed and the nuclear envelope re-formed—whereas cells injected with buffer or a catalytically inactive XCL100 mutant protein remained arrested in mitosis. Coinjection of constitutively active MAP kinase kinase-1, which opposes XCL100's effects on MAP kinase, antagonized the effects of XCL100. Since the only known targets of MAP kinase kinase-1 are Erk1 and Erk2, these findings argue that MAP kinase function is required for the spindle assembly checkpoint in XTC cells.  相似文献   

17.
Centromeric protein-E (CENP-E) is a kinesin-like motor protein required for chromosome congression at prometaphase. Functional perturbation of CENP-E by various methods results in a consistent phenotype, i.e., unaligned chromosomes during mitosis. One unresolved question from previous studies is whether cells complete mitosis or sustain mitotic arrest in the presence of unaligned chromosomes. Using RNA interference and video-microscopy, we analyzed the dynamic process of mitotic progression of HeLa(H2B)-GFP cells lacking CENP-E. Our results demonstrate that these cells initiated anaphase after a delayed mitotic progression due to the presence of unaligned chromosomes. In some dividing cells, unaligned chromosomes are present during anaphase, causing nondisjunction of some sister chromatids producing aneuploid daughter cells. Unlike in Xenopus extract, the loss of CENP-E in HeLa cells does not impair gross checkpoint activation because cells were arrested in mitosis in response to microtubule-interfering agents. However, the lack of CENP-E at kinetochores reduced the hyperphosphorylation of BubR1 checkpoint protein during mitosis, which may explain the loss of sensitivity of a cell to a few unaligned chromosomes in the absence of CENP-E. We also found that presynchronization with nocodazole sensitizes cells to the depletion of CENP-E, leading to more unaligned chromosomes, longer arrest, and cell death.  相似文献   

18.
Identification of a MAD2-binding protein,CMT2, and its role in mitosis   总被引:6,自引:0,他引:6  
MAD2 is a key component of the spindle checkpoint that delays the onset of anaphase until all the kinetochores are attached to the spindle. It binds to human p55CDC and prevents it from promoting destruction of an anaphase inhibitor, securin. Here we report the characterization of a novel MAD2-binding protein, CMT2. Upon the completion of spindle attachment, formation of the CMT2-MAD2 complex coincides with dissociation of the p55CDC-MAD2 complex. Overexpression of CMT2 in cells arrested by the spindle checkpoint causes premature destruction of securin and allows exit from mitosis without chromosome segregation. Depletion of CMT2 induces cell death following a transient delay in the onset of anaphase. These results indicate that CMT2 interacts with the spindle checkpoint and coordinates cell cycle events in late mitosis.  相似文献   

19.
Murine double minute 2 (MDM2) binding protein (MTBP) has been implicated in tumor cell proliferation, but the underlying mechanisms remain unclear. The results of MTBP expression analysis during cell cycle progression demonstrated that MTBP protein was rapidly degraded during mitosis. Immunofluorescence studies revealed that a portion of MTBP was localized at the kinetochores during prometaphase. MTBP overexpression delayed mitotic progression from nuclear envelope breakdown (NEB) to anaphase onset and induced abnormal chromosome segregation such as lagging chromosomes, chromosome bridges, and multipolar chromosome segregation. Conversely, MTBP downmodulation caused an abbreviated metaphase and insufficient mitotic arrest, resulting in abnormal chromosome segregation, aneuploidy, decreased cell proliferation, senescence, and cell death, similar to that of Mad2 (mitotic arrest-deficient 2) downmodulation. Furthermore, MTBP downmodulation inhibited the accumulation of Mad1 and Mad2, but not BubR1 (budding uninhibited by benzimidazoles related 1), on the kinetochores, whereas MTBP overexpression inhibited the release of Mad2 from the metaphase kinetochores. These results may imply that MTBP has an important role in recruiting and/or retaining the Mad1/Mad2 complex at the kinetochores during prometaphase, but its degradation is required for silencing the mitotic checkpoint. Together, this study indicates that MTBP has a crucial role in proper mitotic progression and faithful chromosome segregation, providing new insights into regulation of the mitotic checkpoint.  相似文献   

20.
Constructing a mitotic spindle requires the coordinated actions of several kinesin motor proteins. Here, we have visualized the dynamics of five green fluorescent protein (GFP)-tagged mitotic kinesins (class 5, 6, 8, 13, and 14) in live Drosophila Schneider cell line (S2), after first demonstrating that the GFP-tag does not interfere with the mitotic functions of these kinesins using an RNA interference (RNAi)-based rescue strategy. Class 8 (Klp67A) and class 14 (Ncd) kinesin are sequestered in an active form in the nucleus during interphase and engage their microtubule targets upon nuclear envelope breakdown (NEB). Relocalization of Klp67A to the cytoplasm using a nuclear export signal resulted in the disassembly of the interphase microtubule array, providing support for the hypothesis that this kinesin class possesses microtubule-destabilizing activity. The interactions of Kinesin-5 (Klp61F) and -6 (Pavarotti) with microtubules, on the other hand, are activated and inactivated by Cdc2 phosphorylation, respectively, as shown by examining localization after mutating Cdc2 consensus sites. The actions of microtubule-destabilizing kinesins (class 8 and 13 [Klp10A]) seem to be controlled by cell cycle-dependent changes in their localizations. Klp10A, concentrated on microtubule plus ends in interphase and prophase, relocalizes to centromeres and spindle poles upon NEB and remains at these sites throughout anaphase. Consistent with this localization, RNAi analysis showed that this kinesin contributes to chromosome-to-pole movement during anaphase A. Klp67A also becomes kinetochore associated upon NEB, but the majority of the population relocalizes to the central spindle by the timing of anaphase A onset, consistent with our RNAi result showing no effect of depleting this motor on anaphase A. These results reveal a diverse spectrum of regulatory mechanisms for controlling the localization and function of five mitotic kinesins at different stages of the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号