首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
BACKGROUND AND AIMS: Serpentine soils are characterized by the presence of heavy metals (Ni and Cr) and excess Mg; these elements often suppress plant growth. Picea glehnii is nevertheless distributed widely on serpentine soils in northern Japan. Growth characteristics were compared among P. glehnii, Picea jezoensis (distributed in the same region) and Picea abies (planted for timber production), and concentrations of elements in various tissues over time and the amount of ectomycorrhizal infection in short roots were evaluated. METHODS: Seedlings of three spruce species were planted in two types of experimental plots, comprising serpentine soil and brown forest (non-serpentine) soil, and these seedlings were grown for 3 years. Growth, ectomycorrhizal infection of short roots, and elemental composition of tissues were examined. KEY RESULTS: The total dry mass of P. glehnii planted on serpentine soil was almost the same as on brown forest soil, and a large number of needles survived to reach later age classes. By contrast, growth of P. jezoensis and P. abies in serpentine soil was significantly less than in brown forest soil, and needle shedding was accelerated. Moreover, roots of seedlings of P. glehnii on serpentine soil were highly infected with ectomycorrhiza, and the concentration of Ni in needles and roots of P. glehnii was the lowest of the three species. CONCLUSIONS: Picea glehnii has a high ability to maintain a low concentration of Ni, and the ectomycorrhizal infection may have the positive effect of excluding Ni. As a result, P. glehnii is more tolerant than the other spruce species to serpentine soil conditions.  相似文献   

2.
We studied the growth and photosynthesis of the hybrid larch F1 (Larix gmelinii var. japonica × L. kaempferi) grown on serpentine soil and the effects of soil N load, to determine the performance of this species as reforestation material in serpentine regions. We prepared 16 experimental plots (2 m × 4 m each), eight on serpentine and eight on brown forest soil, and planted one-year-old cutting seedlings of the hybrid larch F1 in each plot, in May 2007. Ammonium sulfate was supplied to half of the plots of each soil type in 2008 and 2009, at a load of 47 kg N ha−1 year−1. Although the growth and photosynthetic capacity of hybrid larch F1 seedlings in the serpentine soil were limited, the rate of growth in serpentine soil was greater than that of Sakhalin spruce (Picea glehnii) that is dominant species in serpentine regions. There was significant interaction between soil type and N load for the growth and photosynthetic parameters. The N load adversely affected growth and photosynthetic parameters in the serpentine soil, while improved them in brown forest soil. Although the growth rate of hybrid larch F1 without N loading showed high potential as an afforestation species in serpentine region, increasing deposition of N might be a threat to the growth and photosynthesis of the hybrid larch F1 in serpentine soil.  相似文献   

3.
Picea glehnii Masters can grow in strongly acidic volcanic ash soil (pH 3.6) in northern Japan. We compared needle longevity, photosynthetic rate, and concentrations of elements in needles, in mature trees of P. glehnii growing in volcanic ash soil and in brown forest soil (pH 5.4). P. glehnii growing in volcanic ash soil showed suppressed photosynthetic rate and growth by the deficiency in nitrogen compared with its growth in brown forest soil. However, the younger needles of P. glehnii growing in volcanic ash soil maintained a high photosynthetic rate, as a result of large amounts of remobilized nitrogen from senesced needles. Needles of P. glehnii growing in volcanic ash soil did not show deficiencies in Ca, Mg, or K. Moreover, Al was at low levels in the needles, suggesting that P. glehnii was able to avoid Al toxicity by Al exclusion. P. glehnii thus exhibits great ability to adapt to an acidic environment.  相似文献   

4.
Picea glehnii is distributed widely on serpentine soils in northern Japan. Serpentine soil is characterised by the presence of heavy metals (Ni, Cr) and excessive Mg; these elements often suppress plant growth. We have examined the tolerance to serpentine soil and its effects on growth of P. glehnii, P. jezoensis (distributed in the same region) and P. abies (planted for timber production).The dry mass of each organ was not reduced in P. glehnii planted in serpentine soil contained nursery (serpentine nursery). In contrast, growth of P. jezoensis and P. abies was suppressed. Concentrations of Ni and Mg in needles and roots of P. glehnii planted in serpentine nursery were the lowest of the three species. Moreover, the photosynthetic rate of P. glehnii planted in the serpentine nursery was not reduced. P. glehnii has high capability to maintain low concentration of Ni, and ectomycorrhizal symbiosis may have a positive effect to excluding Ni. As a result, P. glehnii has a high tolerance against Ni toxicity, and its photosynthetic capacity is not suppressed by accumulation of Ni.  相似文献   

5.
We studied the effects of soil temperature (7, 15, and 25°C) on the growth and photosynthesis of seedlings of the Japanese larch (Larix kaempferi) and its hybrid larch (L. gmelinii × L. kaempferi) to simulate early stages of regeneration after disturbance. At a soil temperature of 7°C, the root length per unit root biomass, chlorophyll concentration, and photosynthetic nitrogen-use efficiency (PNUE) were markedly lower in the Japanese larch than in the hybrid larch, which may indicate that the hybrid larch is better at acquiring water and nutrients. At ambient temperatures of 17–25°C, the light-saturated photosynthesis rate (P sat) of both seedlings grown at a soil temperature of 7°C was lower than at 15 or 25°C. By the 16th week, the needle area, root area, and biomass in seedlings of both types were lower at a soil temperature of 7°C than at soil temperatures of 15 or 25°C. At a soil temperature of 25°C, P sat and nitrogen uptake were lower in both larch species than at 15°C. The growth of the Japanese larch declined sharply from 15 to 25°C; however, the growth of the hybrid larch decreased only slightly from 15 to 25°C. We conclude that an increased soil temperature may retard larch growth in cold regions, especially in the case of the Japanese larch.  相似文献   

6.
Domisch  Timo  Finér  Leena  Lehto  Tarja  Smolander  Aino 《Plant and Soil》2002,239(2):173-185
We studied the effect of soil temperature on nutrient allocation and mycorrhizal development in seedlings of Scots pine (Pinus sylvestris L.) during the first 9 weeks of the growing season. One-year-old seedlings were grown in Carex-peat from a drained and forested peatland at soil temperatures of 5, 9, 13 and 17 °C under controlled environmental conditions. Fourteen seedlings from each temperature treatment were harvested at intervals of three weeks and the current and previous year's parts of the roots, stems and needles were separated. Mineral nutrient and Al contents in all plant parts were determined and the tips and mycorrhizas of the new roots were counted. Microbial biomass C and N in the growth medium were determined at the end of the experiment. None of the elements studied, except Fe, were taken up from the soil by the seedlings during the first three weeks. Thereafter, the contents of all the elements increased at all soil temperatures except 5 °C. Element concentrations in needles, stems and roots increased with soil temperature. Higher soil temperature greatly increased the number of root tips and mycorrhizas, and the numbers of mycorrhizas increased more than did the length of new roots. Cenococcum geophilum was relatively more abundant at lower soil temperatures (5 and 9 °C) than at higher ones (13 and 17 °C). A trend was observed for decreased microbial biomass C and N in the peat soil at higher soil temperatures at the end of the experiment.  相似文献   

7.
于浩  陈展  尚鹤  曹吉鑫 《生态学报》2017,37(16):5418-5427
外生菌根真菌能够提高宿主植物对外界环境胁迫的抵抗力。主要探讨野外条件下外生菌根真菌对酸雨胁迫下马尾松(Pinus massoniana)幼苗生长、养分元素以及表层土壤的影响,以期为酸雨严重区马尾松林恢复提供科学依据。以2年生马尾松幼苗为材料,采用原位试验,共设置6个处理:p H5.6(对照)处理未接种、对照处理接种、p H4.5酸雨处理未接种、p H4.5酸雨处理接种、p H3.5酸雨处理未接种、p H3.5酸雨处理接种。研究表明:(1)酸雨处理与对照处理相比显著降低了非菌根苗总生物量及各部位生物量(根、茎、叶),对株高无显著影响,接种外生菌根真菌可以缓解酸雨对马尾松幼苗生长的不利影响;(2)与对照处理相比,酸雨处理的非菌根苗的针叶中N、P、Ca含量升高,Mg含量降低,根系中N、P、Ca含量降低,Mg含量随p H的降低先升高后降低。接种外生菌根真菌显著提高了p H3.5酸雨处理的马尾松幼苗根系中N、P、Ca、Mg含量,而对针叶中N、P、Ca、Mg含量无显著影响。(3)在非菌根土壤中,p H3.5酸雨处理与对照处理相比显著降低了土壤中有机质、速效磷、速效钾、可溶性碳、可溶性氮、铵态氮、硝态氮含量,而接种外生菌根真菌显著提高了上述指标。酸雨对土壤阳离子交换量无显著影响。总而言之,接种外生菌根真菌促进了酸雨处理的马尾松幼苗生长、缓解了酸雨对马尾松幼苗养分元素和表层土壤的不利影响,由此可见接种外生菌根真菌是减轻酸雨对马尾松危害的一个重要途径。  相似文献   

8.
To evaluate the sensitivity of Japanese cedar (Cryptomeria japonica D. Don) and Japanese red pine (Pinus densiflora Sieb. et Zucc.) to high N deposition, 1-year-old seedlings were grown in brown forest soil treated with N as NH4NO3 at 0, 25, 50, 100 and 300 mg l-1 fresh soil volume, equivalent to 0, 28, 57, 113 and 340 kg N ha-1. Net photosynthetic rate and whole-plant dry mass of C. japonica seedlings were increased by the N treatment, whilst those of P. densiflora seedlings were significantly reduced by the highest N treatment. The reduction in the net photosynthesis of P. densiflora seedlings was mainly due to a depression of carboxylation efficiency accompanied by a decrease in concentration and activity of Rubisco in the needles. In P. densiflora seedlings, needle concentrations of P and Mg were decreased, and the concentrations of N and Mn were increased by the highest N treatment. The reductions in needle protein concentration and Rubisco activity were negatively correlated with the ratios of N/P and Mn/Mg in the needles. These results suggest that nutrient imbalances of these elements may be induced in P. densiflora seedlings grown under high N deposition. We conclude that P. densiflora is more sensitive to high N deposition than C. japonica, and that the relatively high atmospheric N deposition to Japanese forest ecosystems may adversely affect the health of N-sensitive tree species such as P. densiflora.  相似文献   

9.
Abstract

Effects of serpentine and Ni on some aspects of plant metabolism. — Results are here reported of a series of experiments on the metabolism of plants grown on a serpentine soil and in sand and water cultures with the addition of Ni. Variations in the content of citric and malic acid, chlorophylls, P, Ni, Fe (total and HCl soluble), Mn and Cu have been followed during plant growth in the leaves and roots. In Avena and Phaseolus the citric acid content greatly increases in both treatments (serpentine and Ni); the chlorophylls (a+b) markedly decrease; HCl sol. Fe is always reduced, particularly in the serpentine plants, total Fe accumulates in the roots in both treatments. The P content is particularly high in the Ni-treated plants, whilst on serpentine oats are always P-deficient, showing also a lower Mn and Cu content than plants grown in water cultures plus Ni. The relationships between citrate accumulation and scarce Fe translocation are discussed.  相似文献   

10.
Eguchi  N.  Fukatsu  E.  Funada  R.  Tobita  H.  Kitao  M.  Maruyama  Y.  Koike  T. 《Photosynthetica》2004,42(2):173-178
Photosynthetic traits of two-year-old Japanese larch seedlings (Larix kaempferi Carr.) grown at elevated CO2 concentrations were studied in relation to structural changes in the needles. Seedlings were grown at two CO2 concentrations, 360 (AC) and 720 (EC) mol mol–1 at high and low nutrient supply rates, high N (HN) and low N (LN). The photosynthetic capacity fell significantly in EC+LN, but increased significantly in EC+HN. Since the mesophyll surface area exposed to intercellular space per unit leaf area (Ames/A) is correlated with the photosynthetic rate, we measured Ames/A for larch needles growing in EC. Changes of Ames/A in both EC+HN and EC+LN were very similar to the changes in photosynthetic capacity. This suggests that the changes of Ames/A in EC probably caused the changes in the photosynthetic capacity. The changes of Ames/A in EC were attributed to changes in the mesophyll cell size and mesophyll cell number. The photosynthetic capacity in EC can be explained by taking morphological and structural adaptations into account as well as biochemical factors.  相似文献   

11.
We investigated the effect of ectomycorrhizal colonization, charcoal and CO2 levels on the germination of seeds of Larix kaempferi and Pinus densiflora, and also their subsequent physiological activity and growth. The seeds were sown in brown forest soil or brown forest soil mixed with charcoal, at ambient CO2 (360 μmol mol−1) or elevated CO2 (720 μmol mol−1), with or without ectomycorrhiza. The proportions of both conifer seeds that germinated in forest soil mixed with charcoal were significantly greater than for seeds sown in forest soil grown at each CO2 level (P < 0.05; t-test). However, the ectomycorrhizal colonization rate of each species grown in brown forest soil mixed with charcoal was significantly lower than in forest soil at each CO2 treatment [CO2] (P < 0.01; t-test). The phosphorus concentrations in needles of each seedling colonized with ectomycorrhiza and grown in forest soil were greater than in nonectomycorrhizal seedlings at each CO2 level, especially for L. kaempferi seedlings (P < 0.05; t-test), but the concentrations in seedlings grown in brown forest soil mixed with charcoal were not increased at any CO2 level. Moreover, the maximum net photosynthetic rate of each seedling for light and CO2 saturation (P max) increased when the seedlings were grown with ectomycorrhiza at 720 μmol mol−1 [CO2]. Ectomycorrhizal colonization led to an increase in the stem diameter of each species grown in each soil treatment at each CO2 level. However, charcoal slowed the initial growth of both species of seedling, constraining ectomycorrhizal development. These results indicate that charcoal strongly assists seed germination and physiological activity.  相似文献   

12.
Scots pine nursery seedlings were planted in pots, five seedlings per treatment, and placed in an experimental field at the University of Oulu in northern Finland at the beginning of June 1997. Copper and nickel sulphates were mixed with forest mineral soil before seedling planting. The metal levels ranged from 0 to 25 mg Ni kg(-1) dry soil and 0 to 50 mg Cu kg(-1) in dry soil and in combinations of both metals. Current year's needles for element analyses, EDS microanalyses, microscopy and glutathione and peroxidase activity analyses were collected from 1-5 seedlings per treatment in September. Seedling biomass in controls, Cu25 and Cu50 differed significantly from the Ni25Cu50 treatment. The root/shoot ratio was highest in the Ni5 treatment, indicating good root growth, though the roots were visibly healthier in the Cu25 treatment than in the Ni5 treatment. At higher Ni levels, the condition of roots deteriorated. The proportion of plasmolysed mesophyll cells was highest in the Ni25 treatment. Copper-treated seedlings did not suffer from Cu stress, because no severe injuries were seen in either the roots or the needles in Cu-exposed seedlings. The needle concentrations of Cu increased only slightly due to treatments. Ni accumulation in needles increased with increasing concentrations in soil. Needles of Cu-treated seedlings had less oxidized glutathione than those of Ni-treated seedlings, but the roots had higher, not significantly, peroxidase activity levels. Light-colored, swollen thylakoids were occasionally observed in the Ni25Cu50 treatment, indicating some interaction between Ni and Cu. Ni seemed to cause more oxidative stress to the seedlings than copper, which was manifested as a decreased GSH level and an increased proportion of GSSG in the Ni treatments. Copper together with nickel strongly decreased root growth, the root/shoot ratio being lowest in the Ni25Cu50 treatment.  相似文献   

13.
Seedlings of Scots pine (Pinus sylvestris L.) of a northern provenance were cultivated in nutrient solution for 10 weeks in a climate chamber. The nutrient solution (renewed by solution exchange) contained 2.5, 10 or 50 mg N I?1. All other essential elements were added in optimal proportion to the nitrogen. Seedlings cultivated at 10 and 50 mg N I?1 were similar with respect to all characteristics studied. Seedlings cultivated at 2.5 mg N I?1 showed a lower growth rate, especially for the shoot, and an altered morphology, with high root:shoot ratios and long, slender roots. The nitrogen concentrations in shoot and needles as well as in whole seedlings were not significantly affected by the nitrogen supply, while the nitrogen concentrations in the roots were somewhat lower at 2.5 mg N I?1. Ribulose bisphosphate carboxylase (EC 4.1.1.39) activity and the concentrations of carboxylase, total and soluble protein and of chlorophyll in the needles were consistently much lower for seedlings cultivated at 2.5 mg N I?1, than for seedlings grown at higher nutrient levels. A close correlation was observed between activity and concentration of the carboxylase (r=0.95). Carboxylase activity and protein were more sensitive to a low nutrient supply than was chlorophyll. The data show how activity and concentration of ribulose bisphosphate carboxylase and the concentrations of soluble and total protein and of chlorophyll in needles of pine seedlings can be negatively affected by the nutrient supply, also when the nitrogen concentrations in the needles are close to those observed at optimal nutrient supply. It is suggested that pine seedlings store assimilated non-protein nitrogen in the needles when protein synthesis is under restraint. The nitrogen concentration in needles and seedlings could not be used as a measure of the physiological state of the seedlings.  相似文献   

14.

Key message

Elevated CO 2 enhances the photosynthesis and growth of hybrid larch F 1 seedlings. However, elevated CO 2 -induced change of tree shape may have risk to the other environmental stresses.

Abstract

The hybrid larch F1 (Larix gmelinii var. japonica × L. kaempferi) is one of the most promising species for timber production as well as absorption of atmospheric CO2. To assess the ability of this species in the future high CO2 environment, we investigated the growth and photosynthetic response of hybrid larch F1 seedlings to elevated CO2 concentration. Three-year-old seedlings of hybrid larch F1 were grown on fertile brown forest soil or infertile volcanic ash soil, and exposed to 500 μmol mol?1 CO2 in a free-air CO2 enrichment system located in northern Japan for two growing seasons. Regardless of soil type, the exposure to elevated CO2 did not affect photosynthetic traits in the first and second growing seasons; a higher net photosynthetic rate was maintained under elevated CO2. Growth of the seedlings under elevated CO2 was greater than that under ambient CO2. We found that elevated CO2 induced a change in the shape of seedlings: small roots, slender-shaped stems and long-shoots. These results suggest that elevated CO2 stimulates the growth of hybrid larch F1, although the change in tree shape may increase the risk of other stresses, such as strong winds, heavy snow, and nutrient deficiency.  相似文献   

15.
Wallander  Håkan 《Plant and Soil》2000,222(1-2):215-229
Pinus sylvestris seedlings, colonised by ectomycorrhizal (EM) fungi from either of two different soils (untreated forest soil and a limed soil from a clear cut area), were grown with or without biotite as a source of K. The biotite was naturally enriched in 87Sr and the ratio of 87Sr/ 86Sr in the plant biomass was estimated and used as a marker for biotite weathering and compared to estimates of weathering based on foliar content of K. Different nutrient regimes were used to expose the seedlings to deficiencies of K with and without an application of nitrogen (NH4NO3) in excess of seedling demand. The seedlings were grown for 220 days and the elemental composition of the shoots were analysed at harvest. The EM colonisation was followed by analysing the concentration of ergosterol in the roots and the soils. Bacterial activity of the soil was estimated by the thymidine incorporation technique. The concentration of organic acids in the soil solution was measured in the soil in which seedlings colonised by EM fungi from the untreated forest soil were grown. It was found that seedlings colonised by EM fungi from untreated forest soil had taken up more K in treatments with biotite addition compared to seedlings colonised by EM fungi from the limed forest soil (p<0.05). Seedlings from untreated forest soil had larger shoots and contained more K when grown with biotite compared to KCl as K source, indicating that biotite had a stimulatory effect on the growth of these seedlings which was not related to K uptake. Seedlings from the limed soil, on the other hand, had similar foliar K content when grown with either biotite or KCl as K source. The larger uptake of K in seedlings from untreated forest soil was not an effect of a more developed EM colonisation of the roots since seedlings from the limed soil had a higher ergosterol concentration both in the soil and in the roots. Nutrient regimes had no significant influence on the total uptake of K but the 87Sr/ 86Sr isotope ratio in the plant biomass indicated that seedlings grown with excess nitrogen supply had taken up proportionally less Sr from the biotite (1.8% of total Sr content) compared to seedlings grown with a moderate nitrogen supply (5.0%). Furthermore, seedlings grown with excess nitrogen supply had a reduced fungal colonisation of roots and soil and bacterial activity was lower in these soils. The 87Sr/ 86Sr ratio in the plant biomass was positively correlated with fungal colonisation of the roots (r 2=0.98), which may indicate that the fungus was involved in releasing Sr from the biotite. Uptake of K from biotite was not related to the amount of organic acids in the soil solution. Oxalic acid was positively related to the amount of ergosterol in the root, suggesting that oxalic acid in the soil solution originates from the EM symbionts. The accuracy of the estimations of biotite weathering based on K uptake by the seedlings in comparison with the 87Sr/86Sr isotope ratio measured in the shoots is discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Serpentine soils have naturally elevated concentrations of certain heavy metals, including nickel. This study addressed the role of plant origin (serpentine vs. non-serpentine) and symbiosis with arbuscular mycorrhizal fungi (AMF) in plant Ni tolerance. A semi-hydroponic experiment involving three levels of Ni and serpentine and non-serpentine AMF isolates and populations of a model plant species (Knautia arvensis) revealed considerable negative effects of elevated Ni availability on both plant and fungal performance. Plant growth response to Ni was independent of edaphic origin; however, higher Ni tolerance of serpentine plants was indicated by a smaller decline in the concentrations of photosynthetic pigments and restricted root-to-shoot Ni translocation. Serpentine plants also retained relatively more Mg in their roots, resulting in a higher shoot Ca/Mg ratio. AMF inoculation, especially with the non-serpentine isolate, further aggravated Ni toxicity to host plants. Therefore, AMF do not appear to be involved in Ni tolerance of serpentine K. arvensis plants.  相似文献   

17.
The survival and growth of natural beech regeneration after canopy removal is variable and little is known about ecophysiological mechanisms of these responses. Biomass, nonstructural carbohydrate levels and nitrogen concentrations were measured in an Italian population of European beech seedlings. Seedlings were container-grown in two types of soil, organic and mineral, collected at the study site. The seedlings were grown under three light treatments: under full beech canopy (understory), exposed to full sun only during midday (gap) and under full sun (clearing). Leaf gas exchange and chlorophyll a fluorescence parameters were measured and then foliar analyses were conducted for chlorophyll, phenolic and tannin levels. Biomass and allocation were significantly affected by light and soil treatments. The clearing seedlings and those in organic soil were larger than seedlings in the other light treatments or soil type. Total nonstructural carbohydrate concentrations were lower in the understory seedlings and significant differences between soil types were present in the gap and clearing seedlings. Nitrogen concentrations were higher in the understory seedlings and those growing in the organic soil compared to the other treatments. Gas exchange rates were highest in clearing and the organic soil seedlings. Gap seedlings exhibited photosynthetic acclimation that allowed them to utilize high light of midday and any sunflecks during the morning and afternoon. Relative fluorescence was significantly influenced by both light treatment and soil type, with the highest values observed in the gap seedlings. Light response curves showed decreasing apparent maximum quantum efficiency from the understory to clearing, while maximum photosynthetic rate was highest in the gap seedlings. Chlorophyll concentration was highest in understory seedlings and those growing in organic soil and higher in seedlings growing in organic than in mineral soil. Both foliar tannin and phenolic levels were highest in clearing seedlings, and only tannin concentrations were affected by soil type. Understory seedlings had the highest mortality and insect herbivory; the latter was found to be inversely related to tannin concentration. Overall, growth and photosynthesis in beech seedlings responded positively to high light associated with small canopy gaps. Organic soil increased seedling size, particularly in the gap and clearing environments. We conclude that forest gaps are favorable for photosynthesis and growth of European beech seedlings.  相似文献   

18.
The effects of partial debudding on photosynthesis, stomatal conductance and nitrogen contents of 1-year-old needles and newly grown needles were studied in Picea jezoensis (Sieb. et Zucc.). Seventy-five percent of the buds of P.jezoensis seedlings were removed soon after bud break. Gas exchange was measured three times for 1-year-old needles and twice for current-year needles. The photosynthetic rates of 1-year-old needles were greater in debudded seedlings than in control seedlings, and the difference increased as the growing season progressed. This greater photosynthetic rate in debudded seedlings was accompanied by greater stomatal conductance. However, neither the photosynthetic rates nor the stomatal conductance of current-year needles differed between debudded and control seedlings after the needles had fully expanded. Debudding also had no effect on mass-based nitrogen contents in either the 1-year-old or the current-year needles. Area-based nitrogen in the 1-year-old needles did not differ between debudded and control seedlings, but was greater in debudded seedlings than in control seedlings in current-year needles. These results suggest that the enhanced photosynthetic rate is more likely a result of an increased root/leaf ratio that reduces the stomatal limitation of photosynthetic rate than a result of altered sink-source relationships or increased leaf nitrogen content.  相似文献   

19.
K. Makoto  Y. Tamai  Y. S. Kim  T. Koike 《Plant and Soil》2010,327(1-2):143-152
Charcoal produced by fire on the soil surface mixes into the soil over time and is heterogeneously distributed within the soil profile in post-fire forests. To determine how different patterns of vertical distribution of charcoal and ectomycorrhizal formation affect the growth of Larix gmelinii (Gmelin larch) in post-fire forests, we conducted a model experiment in the pots. In this study, pots with a layer of charcoal in the middle of the soil profile promoted growth of the root system of the seedlings significantly more than did pots with no charcoal or with charcoal scattered throughout the soil. Along with the development of the root system, above-ground biomass and total biomass were also increased. Furthermore, in addition to the positive effects of charcoal in the soil, there were also strong positive effects on the growth of seedlings from ectomycorrhizal root formation. As a result, the largest above-ground biomass and total biomass were found for seedlings grown in layered charcoal with ectomycorrhizae. Furthermore, the highest phosphorus concentration in needles was also found for seedlings grown in layered charcoal with ectomycorrhizae. This is attributable to the frequent contact of roots with charcoal in the middle layer of the soil and the utilisation of phosphate by ectomycorrhizae. This suggests that buried and layered charcoal occurring in patches in post-fire stands may provide a suitable habitat for the growth of Gmelin larch seedlings.  相似文献   

20.
Kim  C.-G.  Bell  J. N. B.  Power  S. A. 《Plant and Soil》2003,257(2):443-449
The effects of Cd on the growth and distribution of Cd and mineral nutrients within plant tissues were investigated for Pinus sylvestris L. seedlings grown in mineral forest soil with increasing levels of Cd addition (0–100 mg kg–1). Approximately 20% of added Cd was found to be extractable from sandy loam forest soil. Root growth was less affected by Cd than shoot growth, which showed a significant reduction in the 100 mg Cd kg–1 treatment. Cadmium accumulated in roots up to 325 mg kg–1. Decreased concentrations of K in needles and Ca in stems with increasing Cd levels suggest a disturbance of mineral nutrition as a result of Cd addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号