首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Origin of the Ostracoda and their maxillopodan and hexapodan affinities   总被引:1,自引:1,他引:0  
There are Cambrian fossils attributed to the Ostracoda but the extant subclasses Podocopa and Myodocopa do not appear until the Ordovician. At this time the morphologically similar, free-living ancestors of the now sedentary Thecostraca (Ascothoracida, Acrothoracica and Cirripedia) may have still been extant, and from an ecological point of view it seems likely that, by and large, ostracods replaced them. However, living ostracods have an abbreviated, direct development, and some key aspects of their morphology, such as the nature of the maxillary segment and abdomen, are conjectural. Thus the affinities between these and related taxa remain uncertain; e.g., while some contemporary carcinologists place Ostracoda as a taxon coordinate with the Branchiopoda, Remipedia, Cephalocarida, Maxillopoda, Malacostraca, others tentatively or unequivocally ally them with the Maxillopoda (generally Mystacocarida, Copepoda, Tantulocarida and Thecostraca, and sometimes Branchiura and Pentastomida). Others, largely involved with fossils, have stretched the definition of the Maxillopoda even further, to the point where it seems even less likely a monophyletic taxon. Until recently cladistic analyses utilizing genetic (largely 18S rDNA) as well traditional morphological characteristics have given confusing results regarding the affinities between these taxa, and an important one suggested the Ostracoda might even be diphyletic. Furthermore, a very recent genetic study utilizing protein encoding genes places a podocopine ostracod among the most primitive of the extant crustaceans (Branchiopoda, Cephalocarida Remipedia and Mystacocarida), and then generally at the base of a lineage leading to the Malacostraca, a lineage giving rise to copepods and cirripeds along the way. This indicates these so-called maxillopodan taxa evolved independently from a malacostracan-like ancestor, and if so they are convergent. And finally, from genetic studies it is not only becoming well documented the Crustacea rather than Myriapoda gave rise to the Hexapoda, but it appears the Hexapoda stem from among the lower rather than the higher crustaceans, possibly even from the Ostracoda. Whether there were terrestrial ostracods at the time hexapods appeared in the Lower Ordovician is unknown, but the modest diversity of terrestrial ostracods today are podocopines which also first appeared in the Lower Ordovician. Thus, if current interpretations of living ostracodan and fossil hexapodan body plans are largely correct, it can be hypothesized the Ostracoda are close to the ancestor of the Hexapoda.  相似文献   

2.
The current views on the phylogeny of arthropods are at odds with the traditional system, which recognizes four independent arthropod classes: Chelicerata, Crustacea, Myriapoda, and Insecta. There is compelling evidence that insects comprise a monophyletic lineage with Crustacea within a larger clade named Pancrustacea, or Tetraconata. However, which crustacean group is the closest living relative of insects is still an open question. In recent phylogenetic trees constructed on the basis of large gene sequence data insects are placed together with primitive crustaceans, the Branchiopoda. This topology is often suspected to be a result of the long branch attraction artifact. We analyzed concatenated data on 77 ribosomal proteins, elongation factor 1A (EF1A), initiation factor 5A (eIF5A), and several other nuclear and mitochondrial proteins. Analyses of nuclear genes confirm the monophyly of Hexapoda, the clade uniting entognath and ectognath insects. The hypothesis of the monophyly of Hexapoda and Branchiopoda is supported in the majority of analyses. The Maxillopoda, another clade of Entomostraca, occupies a sister position to the Hexapoda + Branchiopoda group. Higher crustaceans, the Malacostraca, in most analyses appear a more basal lineage within the Pancrustacea. We report molecular synapomorphies in low homoplastic regions, which support the clade Hexapoda + Branchiopoda + Maxillopoda and the monophyletic Malacostraca including Phyllocarida. Thus, the common origin of Hexapoda and Branchiopoda and their position within Entomostraca are suggested to represent bona fide phylogenetic relationships rather than computational artifacts.  相似文献   

3.
4.
A growing body of evidence indicates that Crustacea and Hexapoda are sister groups, rather than Hexapoda and Myriapoda. Some recent molecular data even suggest that Mandibulata is not monophyletic, with Myriapoda and Chelicerata instead being sister groups. Here, arguments for homology of the mandible throughout mandibulate arthropods and for a monophyletic Mandibulata will be presented, as well as arguments supporting the taxon Tetraconata (i.e. Crustacea + Hexapoda). The latter include molecular data (nuclear and mitochondrial ribosomal RNAs and protein coding genes), and morphological characters such as ommatidial structure, the presence of neuroblasts and a very similar axonogenesis of pioneer neurons. However, crustaceans are insufficiently sampled for the molecular data, and studies of neurogenesis are lacking for many crustacean taxa. Remipedia, Cephalocarida and Maxillopoda are particularly problematic. This is important for the entire problem, because monophyly of the Crustacea has not yet been proven beyond doubt and several molecular analyses suggest a paraphyletic Crustacea. Here, arguments for the monophyly of the Crustacea are reviewed and two alternatives for the relationships between the five higher taxa Remipedia, Cephalocarida, Maxillopoda, Branchiopoda and Malacostraca are discussed: the Entomostraca concept sensu Walossek with Malacostraca as sister group to Cephalocarida, Maxillopoda and Branchiopoda, and the Thoracopoda concept sensu Hessler with Cephalocarida, Branchiopoda and Malacostraca forming a monophylum.  相似文献   

5.
Invasive species are considered to be the second cause of biodiversity erosion, and one challenge is to determine the life history traits that cause an increased invasion capacity. Prolonged diapause is a major trait in evolution and insect population dynamics, but its effects on invasion speed remain unknown. From a recently developed mathematical approach (integro-difference equations) applied to the insect dormancy, we show that despite a dispersal cost, bet-hedging diapause strategies with low (0.1-0.2) prolonged diapause frequency (emergence after 1 or 2 years) can have a higher invasion speed than a simple diapause strategy (emergence after 1 year) when the environmental stochasticity is sufficiently high. In such conditions, prolonged diapause is a trait supporting invasion capacity by increasing population stochastic growth rate. This conclusion, which applies to a large range of demographic parameters, is in opposition to the usual view that prolonged dormancy is an alternative strategy to dispersal. However, prolonged diapause does not support invasion if the level of environmental stochasticity is low. Therefore, conclusion about its influence on invasion ability needs a good knowledge of environmental stochasticity in the introduction area of considered species.  相似文献   

6.
Recent molecular analyses indicate that crustaceans and hexapods form a clade (Pancrustacea or Tetraconata), but relationships among its constituent lineages, including monophyly of crustaceans, are controversial. Our phylogenetic analysis of three protein-coding nuclear genes from 62 arthropods and lobopods (Onychophora and Tardigrada) demonstrates that Hexapoda is most closely related to the crustaceans Branchiopoda (fairy shrimp, water fleas, etc.) and Cephalocarida + Remipedia, thereby making hexapods terrestrial crustaceans and the traditionally defined Crustacea paraphyletic. Additional findings are that Malacostraca (crabs, isopods, etc.) unites with Cirripedia (barnacles, etc.) and they, in turn, with Copepoda, making the traditional crustacean class Maxillopoda paraphyletic. Ostracoda (seed shrimp)--either all or a subgroup--is associated with Branchiura (fish lice) and likely to be basal to all other pancrustaceans. A Bayesian statistical (non-clock) estimate of divergence times suggests a Precambrian origin for Pancrustacea (600 Myr ago or more), which precedes the first unambiguous arthropod fossils by over 60 Myr.  相似文献   

7.
Propagule dispersal and the scales of marine community process   总被引:4,自引:0,他引:4  
Benthic marine organisms are characterized by a bipartite life history in which populations of sedentary adults are connected by oceanic transport of planktonic propagules. In contrast with the terrestrial case, where ‘long distance dispersal’ (LDD) has traditionally been viewed as a process involving rare events, this creates the possibility for large numbers of offspring to travel far relative to the spatial scale of adult populations. As a result, the concept of LDD must be examined carefully when applied in a marine context. Any measure of LDD requires reference to an explicit ‘local’ scale, often defined in terms of adult population demography, habitat patchiness, or the average dispersal distance. Terms such as ‘open’ and ‘closed’ are relative, and should be used with caution, especially when compared across different taxa and systems. We use recently synthesized data on marine propagule dispersal potential and the spread of marine invasive species to draw inferences about average and maximum effective dispersal distances for marine taxa. Foremost, our results indicate that dispersal occurs at a wide range of scales in marine communities. The nonrandom distribution of these scales among community members has implications for marine community dynamics, and for the implementation of marine conservation efforts. Second, in agreement with theoretical results, our data illustrate that average and extreme dispersal scales do not necessarily covary. This further confounds simple classifications of ‘short’ and ‘long’ dispersers, because different ecological processes (e.g. range expansion vs. population replenishment) depend on different aspects of the dispersal pattern (e.g. extremes vs. average). Our findings argue for a more rigorous quantitative view of scale in the study of marine dispersal processes, where relative terms such as ‘short’ and ‘long’, ‘open’ and ‘closed’, ‘retained’ and ‘exported’ are defined only in conjunction with explicit definitions of the scale and process of interest. This shift in perspective represents an important step towards unifying theoretical and empirical studies of dispersal processes in marine and terrestrial systems.  相似文献   

8.
How perennial are perennial plants?   总被引:13,自引:0,他引:13  
Johan Ehrln  Kari Lehtil 《Oikos》2002,98(2):308-322
Trade-offs involving life span are important in the molding of plant life histories. However, the empirical examination of such patterns has so far been limited by the fact that information on life span is mainly available in terms of discrete categories; annuals, semelparous perennials and iteroparous perennials. We used transition matrix models to project continuous estimates of conditional life spans from published information on size- or stage-structured demography for 71 perennial plant species. The projected life span ranged from 4.3 to 988.6 years and more than half of the species had a life span of more than 35 years. Woody plants had on average a projected life span more than four times as long as non-woody plants. Life spans were higher in forests than in open habitats and individuals of non-clonal species tended to have a longer life span than ramets of clonal species. Self-incompatible plants on average lived longer than self-compatible plants. There were no clear relations between life span and geographical region, dispersal syndrome, pollination mode, seed size or the presence of a seed bank. We conclude that accurate estimates of life span are central to understand how longevity is correlated to other traits within the group of perennial plants.  相似文献   

9.
Diapause, a potent force in the evolution of freshwater crustaceans   总被引:2,自引:2,他引:0  
After a brief historical review of the discovery of diapause in freshwater crustaceans, its dramatic nature in certain cyclopoid copepods, in which diapausing individuals may occur at densities of > 106 per m2, is used to illustrate the enormous ecological significance of the phenomenon. Some of the problems presented by dispause in cyclopoid copepods are noted, including the different behaviour in different lakes of what appears to be a single species. Different physiological cues or different genetic endowments are clearly involved.The wider incidence of diapause in freshwater copepods and ostracods is noted.Among freshwater crustaceans it it the Branchiopoda that have universally adopted diapause, always at the egg stage. Even such an ancient order as the Anostraca, perhaps the most primitive of all crustaceans, produces elaborately constructed resting eggs that are capable of cryptobiosis, can remain viable in a dry state for long periods, and can tolerate extreme conditions. The nature of branchiopod resting eggs is briefly reviewed. Of these, only those of the Anomopoda are protected by containers derived from the parental carapace. These are mechanically complex in the most advanced species but, as shown by fossils, are extremely ancient structures.Factors initiating the onset and termination of diapause in branchiopods are briefly noted, and the process of hatching of resting eggs is outlined.  相似文献   

10.
1. Diapause is a dynamic process of low metabolic activity that allows insects to survive periods of harsh conditions. Notwithstanding the lowered metabolism, and because diapausing insects have no access to food, diapause has an energetic cost that may affect post‐diapause performance. 2. Previous studies on the solitary bee Osmia lignaria have shown that prolonged pre‐wintering periods (the time during which individuals already in diapause remain at warm temperatures) are associated with elevated lipid consumption, fat body depletion, and body weight loss. The present study investigated whether prolonged pre‐wintering also affects reproduction, i.e. whether the costs associated with diapause could have an effect on post‐diapause performance in this species. 3. Females were exposed to a range of pre‐wintering conditions, and ovary development and individual post‐wintering performance were monitored throughout their adult life span. 4. No evidence of an effect of pre‐wintering duration on post‐diapause reproductive success was found. Expected differences in the timing of establishment were not observed because ovary maturation was, surprisingly, not arrested during pre‐wintering. Prolonged pre‐wintering duration did not result in decreased life span, probably because emerging females could rapidly replenish their metabolic reserves through feeding. However, there was a very strong effect of the duration of the pre‐emergence period on the likelihood of nest establishment. 5. Longevity, the main factor determining fecundity in Osmia, is subjected to high levels of intrinsic variability, even among females of similar size exposed to identical conditions during development and nesting.  相似文献   

11.
This essay re-evaluates the phylogenetic position of the Cephalocarida in the light of the recently discovered Orsten (Upper Cambrian) crustaceans, the living Remipedia, and new interpretation of the Paleozoic ‘trilobitomorphs’. The Orsten crustaceans reinforce the belief that cephalocarid external morphology is primitive, except to show that the early crustacean trunk limb was almost surely biramous. The epipod appears to be a synapomorphy of the Cephalocarida, Branchiopoda and Malacostraca, thus justifying the existence of the Thoracopoda, which is coequal to the Maxillopoda and Remipedia. External morphology of the Remipedia is too specialized to support the hypothesis that it approximates that of the urcrustacean. Crustaceans and chelicerates are still best regarded as subgroups of the Schizoramia.  相似文献   

12.
Long life cycles in insects   总被引:1,自引:0,他引:1  
Long life cycles covering more than one year are known for all orders of insects. There are different mechanisms of prolongation of the life cycle: (1) slow larval development; (2) prolongation of the adult stage with several reproduction periods; (3) prolongation of diapause; (4) combination of these mechanisms in one life cycle. Lasting suboptimal conditions (such as low temperature, low quality of food or instability of food resources, natural enemies, etc.) tend to prolong life cycles of all individuals in a population. In this case, the larvae feed and develop for longer than a year, and the active periods are interrupted by dormancy periods. The nature of this dormancy is unknown: in some cases it appears to be simple quiescence, in others it has been experimentally shown to be a true diapause. Induction and termination of these repeated dormancy states are controlled by different environmental cues, the day-length being the principal one as in the case of the annual diapause. The long life cycles resulting from prolonged adult lifespan were experimentally studied mainly in beetles and true bugs. The possibility of repeated diapause and several periods of reproductive activity is related to the fact that the adults remain sensitive to day length, which is the main environmental cue controlling their alternative physiological states (reproduction vs. diapause). Habitats with unpredictable environmental changes stimulate some individuals in a population to extend their life cycles by prolonged diapause. The properties of this diapause are poorly understood, but results of studies of a few species suggest that this physiological state differs from the true annual diapause in deeper suppression of metabolism. Induction and intensity of prolonged diapause in some species appear to be genetically controlled, so that the duration of prolonged diapause varies among individuals in a group, even that of sibles reared under identical conditions. Thus, long life cycles are realized due to the ability of insects to interrupt activity repeatedly and enter dormancy. This provides high resistance to various environmental factors. Regardless of the nature of this dormancy (quiescence, annual or prolonged diapause, or other forms) and the life cycle duration, the adults always appear synchronously after dormancy in the nature. The only feasible explanation of this is the presence of a special synchronizing mechanism, most likely both exo- and endogenous, since the adults appear not only synchronously but also in the period best suited for reproduction. As a whole, the long life cycles resulting from various structural modifications of the annual life cycle, are typical of the species living under stable suboptimal conditions when the pressure of individual environmental factors is close to the tolerance limits of the species, even though it represents its norm of existence. Such life cycles are also typical of the insects living in unstable environments with unpredictable variability of conditions, those developing in cones and galls, feeding on flowers, seeds, or fruits with limited periods of availability, those associated with the plant species with irregular patterns of blossoming and fruiting, and those consuming low-quality food or depending on unpredictable food sources (e.g., predators or parasites). Long cycles are more common in: (1) insect species at high latitudes and mountain landscapes where the vegetation season is short and unstable; (2) species living in deserts or arid areas where precipitation is unstable and often insufficient for survival of food plants; (3) inhabitants of cold and temporary water bodies that are not filled with water every year. At the same time, long life cycles sometimes occur in insects from other climatic zones as well. It is also important to note that while there is a large body of literature dealing with the long life cycles in insects, it mostly focuses on external aspects of the phenomenon. Experimental studies are needed to understand this phenomenon, first of all the nature of dormancy and mechanisms of synchronization of adult emergence.  相似文献   

13.
Colonies of a social spider Achaearanea wau (Theridiidae) from Papua, New Guinea have adult and juvenile sex ratios that are biased towards females, and this probably represents a primary bias at the egg stage. Adult sex ratios are less female-biased than are juvenile sex ratios, and both vary significantly among colonies. Adult sex ratios covary with colony size: small colonies have a larger proportion of males than large ones. The pattern of variation in adult sex ratio may be due to greater mortality of females than of males during maturation. Juvenile sex ratios do not covary with colony size, nor do they differ among populations. Colony size, however, does have a significant effect on survival and dispersal in colonies. I conclude, therefore, that a conditional sex ratio strategy, in which the primary sex ratio of the colony is adjusted to changing demographic patterns, does not occur in A. wau. I suggest that environmental heterogeneity acting on individual reproductive output may be responsible for the observed variation among colonies in juvenile sex ratios.  相似文献   

14.
Summary Flesh flies (Sarcophagidae) collected in Costa Rica and Panama lack the pupal diapause that is characteristic of flesh flies from the temperate zone and tropical Africa. The absence of a diapause capacity in the neotropical species correlates with several other life history traits: in most species the post feeding wandering phase of the third larval instar is longer and duration is more variable, adult life is longer, clutch size is smaller, and more clutches are produced. Among species that have the capacity for diapause, risk is invested primarily in the diapausing stage and other life stages are brief. Though diapausing species are short-lived, they produce as many or more progeny than nondiapausing species by increasing clutch size. The slower and more variable developmental rate and increased adult longevity desynchronizes development and permits the nondiapausing species to spread an environmental risk over different stages of the life cycle, thus offering an alternative to diapause. Other traits such as body size, developmental velocity, thermal constant thresholds, thermal constants, age at first reproduction, and the interval between clutches do not appear related to the capacity for diapause.  相似文献   

15.
Peter Ryser  Pille Urbas 《Oikos》2000,91(1):41-50
Interspecific variation in leaf life span reflects the variation in nutrient conservation ability among different plant species and is considered to be associated with nutrient availability in the characteristic habitat. As defoliation interferes with nutrient conservation by the long-lived leaves, we hypothesized that disturbance rate is another important environmental factor working as a selective force on interspecific variation in leaf life span. In order to investigate this, we measured leaf life span of 32 grass species in mature garden-grown individuals. Variation in leaf life span was compared to measured leaf traits, to available data on species occurrence along gradients of nutrient availability and disturbance, and to published relative growth rates of the species. Leaf life span was associated positively with leaf tissue mass density and negatively with specific leaf area. Leaf life span correlated negatively with the disturbance rate in the characteristic habitat of a species, but not with nutrient availability. The latter relationship did not come about due to the long leaf life spans of species from nutrient-rich habitats with a relatively low disturbance rate, and to some extent also due to the short leaf life spans of annual species from relatively nutrient-poor sites. We conclude that although leaf longevity is an important means of reducing nutrient losses, this is a selective advantage only if the plant is not subjected to frequent defoliation. The frequently postulated association between leaf life span of a species and nutrient availability in its characteristic habitat may occur among species of habitats with positively correlated nutrient availability and disturbance rate. Leaf life span is negatively associated with seedling RGR, but there may be deviations in this relationship due to species with contrasting characteristics at seedling stage and at maturity.  相似文献   

16.
Marine species in the Indo‐Pacific have ranges that can span thousands of kilometres, yet studies increasingly suggest that mean larval dispersal distances are less than historically assumed. Gene flow across these ranges must therefore rely to some extent on larval dispersal among intermediate ‘stepping‐stone’ populations in combination with long‐distance dispersal far beyond the mean of the dispersal kernel. We evaluate the strength of stepping‐stone dynamics by employing a spatially explicit biophysical model of larval dispersal in the tropical Pacific to construct hypotheses for dispersal pathways. We evaluate these hypotheses with coalescent models of gene flow among high‐island archipelagos in four neritid gastropod species. Two of the species live in the marine intertidal, while the other two are amphidromous, living in fresh water but retaining pelagic dispersal. Dispersal pathways predicted by the biophysical model were strongly favoured in 16 of 18 tests against alternate hypotheses. In regions where connectivity among high‐island archipelagos was predicted as direct, there was no difference in gene flow between marine and amphidromous species. In regions where connectivity was predicted through stepping‐stone atolls only accessible to marine species, gene flow estimates between high‐island archipelagos were significantly higher in marine species. Moreover, one of the marine species showed a significant pattern of isolation by distance consistent with stepping‐stone dynamics. While our results support stepping‐stone dynamics in Indo‐Pacific species, we also see evidence for nonequilibrium processes such as range expansions or rare long‐distance dispersal events. This study couples population genetic and biophysical models to help to shed light on larval dispersal pathways.  相似文献   

17.
In temperate areas, dormancy (diapause and/or quiescence) enables herbivorous insect species to persist and thrive by synchronizing growth and reproduction with the seasonal phenology of their host plants. Within-population variability in dormancy increases survival chances under unpredictable environmental changes. However, prolonged dormancy may be costly, incurring trade-offs in important adult fitness traits such as life span and reproduction. We used the European cherry fruit fly, Rhagoletis cerasi, a stenophagous, univoltine species that overwinters in the pupal stage for usually one or more years to test the hypotheses that prolonged dormancy of pupae has trade-offs with body size, survival and reproduction of the resulting adults. We used two geographically isolated populations of R. cerasi to compare the demographic traits of adults obtained from pupae subjected to one or two cycles of warm-cold periods (annual and prolonged dormancy respectively). Regardless of population, adults from pupae that experienced prolonged dormancy were larger than counterparts emerging within 1year. Prolonged dormancy did not affect adult longevity but both lifetime fecundity and oviposition were significantly decreased. Extension of the life cycle of some individuals in R. cerasi populations in association with prolonged dormancy is likely a bet-hedging strategy.  相似文献   

18.
19.
Abstract.  Diapause is common among insects and is regarded as an adaptive response to periodic occurrence of adverse conditions. It occurs at a particular developmental stage, typically only once in a lifetime. However, little is known about the details of the control mechanism of life cycles with multiple diapauses in insects. In this study, a complex 2-year life cycle with three types of diapause is reported in a subtropical cockroach, Symploce japonica : a winter diapause in mid-nymphal instars, a summer diapause in later nymphal instars, and a reproductive diapause is reported in the adult stage. Nymphal development was extremely slow either at short days (winter diapause) or long days (summer diapause). Nymphs in summer diapause matured rapidly when transferred from long days to short days, indicating that seasonal changes in day-length are the pivotal factor in the control of this life cycle. It is proposed that the main significance of winter diapause in this subtropical species is to enable the nymphs to survive the mild winter successfully with reduced energy demand, and that of summer diapause is to delay adult emergence until late in the autumn for successful induction of the following adult diapause. Adults do not emerge until shortly before winter, yet the presence of diapause in the adult stage does not simply appear to be a response to cope with the winter conditions but, instead, ensures that reproduction will occur early the next year, before summer, because reproduction is greatly hampered at high temperature.  相似文献   

20.
Extended life cycle in the chestnut weevil: prolonged or repeated diapause?   总被引:2,自引:0,他引:2  
Many insect species extend the life cycle of a part of their population over several years. The adaptive value of these long cycles is now well documented, but the physiological processes underlying them have been little studied. Long life cycles are usually viewed as resulting from prolonged diapause proceeding from a simple extension of the usual winter diapause. However, this hypothesis has not been greatly tested, and information is lacking for species with a larval diapause. The energetic cost of a prolonged larval diapause also needs to be measured, because the few published estimates of lipid consumption concern an imaginal diapause. It is not therefore clear whether the negligible lipid consumption observed during adult prolonged diapause can be extrapolated to larval diapause. From microrespirometry and lipid measures in the chestnut weevil, Curculio elephas Gyllenhal (Coleoptera: Curculionidae), we show that: (1) in contrast to the usual hypothesis, the long cycle does not result from an extension of larval winter diapause, but is due to a prolonged diapause occurring secondarily to a developmental phase, and (2) energy consumption during the prolonged diapause is not negligible, but is provided for by a higher initial lipid content in the long cycle individuals. The adaptive value of the observed cycle is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号