首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The subunit arrangement of the reaction center complex (RC) of Rhodopseudomonas sphaeroides was studied by chemical modification with four different cross-linking reagents using purified RC in lauryldimethylamine oxide, RC incorporated into liposomes, and intact chromatophore membranes, from which RCs are isolated. The RC of R. sphaeroides is composed of three polypeptide subunits, H, M, and L, apparent molecular mass as determined in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, of 28,000, 24,000, and 21,000, respectively. The intra-complex products produced, were found to contain the polypeptides H-M-L, H-M, H-L, and M-L linked together. In addition, the cross-linking of cytochrome c to solubilized and membrane-bound RCs was observed with all four reagents. The products were found to be only a cytochrome c linked to either the M or L polypeptide. These results indicate that a portion of the L and M subunits of the RC must be exposed in situ on the periplasmic surface of the membrane near a binding site for cytochrome c on the RC, and all three subunits must be in close proximity to one another.  相似文献   

2.
The molecular organization of photochemical reaction (PR) complex in chromatophores from Rhodospirillum rubrum was studied by a combination of proteolytic analysis with proteinase K followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunochemical analysis with rabbit polyclonal antibodies against its five subunits (H, M, L, alpha, and beta). The preparations used for comparison were reaction center complex (RC) (composed of H, M, and L), PR complex, and chromatophores (closed membranous vesicles of polar lipid bilayer having PR complex buried in the membrane). 1. RC was bound with anti-H, anti-M, and anti-L antibodies, whereas PR complex and chromatophores were bound with anti-H and anti-beta antibodies, but not with the other antibodies. 2. With PR complex, H (Mr 31,000 (31K)) was rapidly degraded into two peptides with Mr of 16K and 14.5K (abbreviated as 16K and 14.5K, respectively), M (27K) into 25.5K, and beta (11K) into 10K. Significantly later, the 25.5K of M was degraded into 24K, L (23K) into 19K, and alpha (12K) into 11K. With chromatophores, H and beta were degraded in a manner similar to that with PR complex, whereas M, L, and alpha were not degraded at all. With RC, H, M, and L were rapidly degraded. 3. With RC, the activity for photooxidation of P870 (photochemical activity) was hardly affected till H, M, and L had been degraded into less than 10K, 24K, and 19K, respectively. With PR complex, the absorbance spectrum due to the bacteriochlorophylls of light-harvesting complex-1 composed of alpha and beta (LH1-Bchl) changed in parallel to the degradation of alpha or 10K (a part of beta). 4. Together with the previous results (Ueda et al. (1985) J. Biochem. 98, 1487-1498), the present findings suggest that: 1) RC is directly surrounded by 12 alpha and further by 12 beta; 2) H and beta are mostly and partially exposed, respectively, on the outer surface of the membranous vesicle; 3) a small part of M is exposed on the inner surface of the membranous vesicle.  相似文献   

3.
C Kirmaier  D Weems  D Holten 《Biochemistry》1999,38(35):11516-11530
We report the primary charge separation events in a series of Rhodobacter capsulatus reaction centers (RCs) that have been genetically modified to contain a lysine near the bacteriochlorophyll molecule, BChl(M), on the nonphotoactive M-side of the RC. Using wild type and previously constructed mutants as templates, we substituted Lys for the native Ser residue at position 178 on the L polypeptide to make the S(L178)K single mutant, the S(L178)K/G(M201)D and S(L178)K/L(M212)H double mutants, and the S(L178)K/G(M201)D/L(M212)H triple mutant. In the triple mutant, the decay of the photoexcited primary electron donor (P) occurs with a time constant of 15 ps and is accompanied by 15% return to the ground state, 62% electron transfer to the L-side bacteriopheophytin, BPh(L), and 23% electron transfer to the M-side analogue, BPh(M). The data supporting electron transfer to the M-side include bleaching of the Q(X) band of BPh(M) at 528 nm and a spectrally and kinetically resolved anion band with a maximum at 640 nm assigned to BPh(M)(-). The decay of these features and concomitant approximately 20% decay of bleaching of the 850 nm band of P give a P(+)BPh(M)(-) lifetime on the order of 1-2 ns that reflects deactivation to give the ground state. These data and additional findings are compared to those from parallel experiments on the G(M201)D/L(M212)H double mutant, in which 15% electron transfer to BPh(M) has been reported previously and is reproduced here. We also compare the above results with the primary electron-transfer processes in S(L178)K, S(L178)K/G(M201)D, and S(L178)K /L(M212)H RCs and with those for the L(M212)H and G(M201)D single mutants and wild-type RCs. The comparison of extensive results that track the primary events in these eight RCs helps to elucidate key factors underlying the directionality and high yield of charge separation in the bacterial photosynthetic RC.  相似文献   

4.
The interaction of metal ions with isolated photosynthetic reaction centers (RCs) from the purple bacteria Rhodobacter sphaeroides, Rhodobacter capsulatus, and Rhodopseudomonas viridis has been investigated with transient optical and magnetic resonance techniques. In RCs from all species, the electrochromic response of the bacteriopheophytin cofactors associated with Q(A)(-)Q(B) --> Q(A)Q(B)(-) electron transfer is slowed in the presence of Cu(2+). This slowing is similar to the metal ion effect observed for RCs from Rb. sphaeroides where Zn(2+) was bound to a specific site on the surface of the RC [Utschig et al. (1998) Biochemistry 37, 8278]. The coordination environments of the Cu(2+) sites were probed with electron paramagnetic resonance (EPR) spectroscopy, providing the first direct spectroscopic evidence for the existence of a second metal site in RCs from Rb. capsulatus and Rps. viridis. In the dark, RCs with Cu(2+) bound to the surface exhibit axially symmetric EPR spectra. Electron spin echo envelope modulation (ESEEM) spectral results indicate multiple weakly hyperfine coupled (14)N nuclei in close proximity to Cu(2+). These ESEEM spectra resemble those observed for Cu(2+) RCs from Rb. sphaeroides [Utschig et al. (2000) Biochemistry 39, 2961] and indicate that two or more histidines ligate the Cu(2+) at the surface site in each RC. Thus, RCs from Rb. sphaeroides, Rb. capsulatus, and Rps. viridis each have a structurally analogous Cu(2+) binding site that is involved in modulating the Q(A)(-)Q(B) --> Q(A)Q(B)(-) electron-transfer process. Inspection of the Rps. viridis crystal structure reveals four potential histidine ligands from three different subunits (M16, H178, H72, and L211) located beneath the Q(B) binding pocket. The location of these histidines is surprisingly similar to the grouping of four histidine residues (H68, H126, H128, and L211) observed in the Rb. sphaeroides RC crystal structure. Further elucidation of these Cu(2+) sites will provide a means to investigate localized proton entry into the RCs of Rb. capsulatus and Rps. viridis as well as locate a site of protein motions coupled with electron transfer.  相似文献   

5.
The three isozymic subunits of phosphofructo-1-kinase present in rabbit brain and designated A, B and C were phosphorylated in vitro by cyclic AMP-dependent protein kinase with 32P-labeled ATP. Limited digestion of the labeled enzymes with trypsin or with Staphylococcus aureus V8 proteinase led to the solubilization of radiolabeled peptides derived from the three isozymic subunits. Limited digestion by V8 proteinase was accompanied by a slight reduction in the apparent sizes of the subunits, indicating that the phosphorylated sites are located near either the amino or carboxyl termini of the protein. V8 proteinase digestion led to no change in the maximal activity of the enzyme but did abolish sensitivity to ATP inhibition. The phosphopeptides of the tryptic and the V8 digests were purified by chromatography and their amino acid sequences were determined and compared to the previously established sequence from rabbit muscle isozyme A. PFK-A E H I S R K R S G E A T V PFK-B H V T R R S L S M A K G F PFK-C V S A S P R G S Y R K F L In each instance, the phosphorylated serine, underlined in the above sequences, was found to be one or two residues toward the C-terminus of one or more basic residues. No other similarities in structure were noted.  相似文献   

6.
Y Z Zhang  G Ewart  R A Capaldi 《Biochemistry》1991,30(15):3674-3681
The arrangement of three subunits of beef heart cytochrome c oxidase, subunits Va, VIa, and VIII, has been explored by chemical labeling and protease digestion studies. Subunit Va is an extrinsic protein located on the C side of the mitochondrial inner membrane. This subunit was found to label with N-(4-azido-2-nitrophenyl)-2-aminoethane[35S]sulfonate and sodium methyl 4-[3H]formylphenyl phosphate in reconstituted vesicles in which 90% of cytochrome c oxidase complexes were oriented with the C domain outermost. Subunit VIa was cleaved by trypsin both in these reconstituted vesicles and in submitochondrial particles, indicating a transmembrane orientation. The epitope for a monoclonal antibody (mAb) to subunit VIa was lost or destroyed when cleavage occurred in reconstituted vesicles. This epitope was localized to the C-terminal part of the subunit by antibody binding to a fusion protein consisting of glutathione S-transferase (G-ST) and the C-terminal amino acids 55-85 of subunit VIa. No antibody binding was obtained with a fusion protein containing G-ST and the N-terminal amino acids 1-55. The mAb reaction orients subunit VIa with its C-terminus in the C domain. Subunit VIII was cleaved by trypsin in submitochondrial particles but not in reconstituted vesicles. N-Terminal sequencing of the subunit VIII cleavage product from submitochondrial particles gave the same sequence as the untreated subunit, i.e., ITA, indicating that it is the C-terminus which is cleaved from the M side. Subunits Va and VIII each contain N-terminal extensions or leader sequences in the precursor polypeptides; subunit VIa is made without an N-terminal extension.  相似文献   

7.
We recently proposed a structural model for the ATP-dependent proton pump from clathrin-coated vesicles (Arai, H., Terres, G., Pink, S., and Forgac, M. (1988) J. Biol. Chem. 263, 8796-8802). To test this model further, we have carried out additional structural analysis of the (H+)-ATPase in both the detergent-solubilized and reconstituted states in this and the following paper (Adachi, I., Puopolo, K., Marquez-Sterling, N., Arai, H., and Forgac, M. (1990) J. Biol. Chem. 265, 967-973). The orientation of the reconstituted proton pump was determined by analyzing the effect of detergent on ATP hydrolysis and by quantitating the extent of labeling of luminally oriented subunits using a membrane-impermeant reagent. Greater than 90% of the reconstituted (H+)-ATPase is oriented with the cytoplasmic surface facing outward. Treatment of the reconstituted (H+)-ATPase with trypsin results in rapid cleavage of the 100-, 73-, 58-, 38-, and 34-kDa subunits and slower cleavage of the 40- and 33-kDa subunits, consistent with our previous results indicating that all of these polypeptides have some portion of their mass exposed to the cytoplasmic surface. The 19- and 17-kDa subunits, by contrast, appear resistant to cleavage by trypsin in both the detergent-solubilized and reconstituted states, consistent with their being buried extensively in the hydrophobic phase of the bilayer. Treatment of the enzyme with trypsin under conditions in which the 100-, 73-, 58-, 38-, and 34-kDa subunits have been cleaved results in a species which is virtually inactive with respect to proton transport but retains 50% of the original ATPase activity, suggesting that proteolysis has resulted in uncoupling of these two activities. Cleavage of both the 73- and 58-kDa subunits by trypsin at a site 1-2 kDa from the amino terminus is inhibited in the presence of 2',3'-O-(2,4,6-trinitrophenyl)-ATP, consistent with the suggestion that both the 73- and 58-kDa subunits may be nucleotide binding proteins.  相似文献   

8.
Mutant reaction centers (RC) from Rhodobacter sphaeroides have been studied in which histidine L153, the axial ligand of the central Mg atom of bacteriochlorophyll BA molecule, was substituted by cysteine, methionine, tyrosine, or leucine. None of the mutations resulted in conversion of the bacteriochlorophyll BA to a bacteriopheophytin molecule. Isolated H(L153)C and H(L153)M RCs demonstrated spectral properties similar to those of the wild-type RC, indicating the ability of cysteine and methionine to serve as stable axial ligands of the Mg atom of bacteriochlorophyll BA. Because of instability of mutant H(L153)L and H(L153)Y RCs, their properties were studied without isolation of these complexes from the photosynthetic membranes. The most prominent effect of the mutations was observed with substitution of histidine by tyrosine. According to the spectral data and the results of pigment analysis, the BA molecule is missing in the H(L153)Y RC. Nevertheless, being associated with the photosynthetic membrane, this RC can accomplish photochemical charge separation with quantum yield of approximately 7% of that characteristic of the wild-type RC. Possible pathways of the primary electron transport in the H(L153)Y RC in absence of photochemically active chromophore are discussed.  相似文献   

9.
The topology of several of the cytoplasmically made subunits of beef heart cytochrome c oxidase has been determined by protease digestion of oriented membrane preparations, using subunit-specific antibodies to identify cleavage products. Reconstituted vesicles of cytochrome c oxidase and asolectin were used as a vesicle preparation with the C domain of the enzyme available for protease digestion. Submitochondrial particles were used as vesicles with the M domain outermost. Trypsin and/or proteinase K cleaved polypeptides CIV, ASA, AED, STA, and IHQ. Cleavage of CIV, STA, and IHQ was from the M domains only and involved the removal of a fragment from the N-terminus in each case. Polypeptide AED was cleaved from the C side in the N-terminal part, while ASA was cleaved from both the C and M domains. Polypeptide fragments were electroblotted from polyacrylamide gels onto derivatized glass paper and sites of proteolytic cleavage determined by N-terminal sequence analysis.  相似文献   

10.
All the major membrane proteins of isolated chromatophore vesicles are eventually degraded upon incubation with the unspecific proteinase K. These proteins must therefore be exposed at least partially or temporarily on the cytosolic surface of the membrane which is exclusively accessible to the proteinase in intact chromatophore vesicles. That the vesicles are intact during the incubation with proteinase is demonstrated by the finding that cytochrome c2, which is located in the interior of the vesicles, is protected from proteolytic attack. The degree of degradation of the various chromatophore proteins and the time taken for degradation differ characteristically. From the changes in intensity of the gel bands during the course of digestion it appears that reaction center subunit H is digested first, much faster than are subunits M and L. The near-infrared absorption spectrum of the chromatophores changes only after proteolytic degradation of these two pigment-carrying subunits. Fading of the band of the light-harvesting polypeptide is evident only after prolonged incubation. It seems that this is the most stable component of the chromatophore membrane. The light-harvesting polypeptide appears to be somewhat shortened eventually, leaving the protein conformation necessary for holding the pigments unchanged, as shown by the absorption spectrum. The possible topology of these major membrane components is discussed in the light of these findings.  相似文献   

11.
The localization of the reaction center polypeptides (L, M, and H) in the membranes of both the wild-type, strain 2.4.1, and the carotenoidless mutant, R-26, of Rhodopseudomonas sphaeroides was determined by using affinity-purified antibodies specific for these proteins. Binding of the antibodies to reaction center subunits in spheroplasts was visualized in the electron microscope by immunoferritin labeling. The H and M subunits were labeled at both the cytoplasmic and the periplasmic surfaces of the membrane, whereas the L subunit was labeled only at the periplasmic surface of the membrane. Thus, the reaction center is asymmetrically oriented in the membrane with at least two subunits (H and M) spanning the membrane.  相似文献   

12.
A new reaction center (RC) quadruple mutant, called LDHW, of Rhodobacter sphaeroides is described. This mutant was constructed to obtain a high yield of B-branch electron transfer and to study P(+)Q(B)(-) formation via the B-branch. The A-branch of the mutant RC contains two monomer bacteriochlorophylls, B(A) and beta, as a result of the H mutation L(M214)H. The latter bacteriochlorophyll replaces bacteriopheophytin H(A) of wild-type RCs. As a result of the W mutation A(M260)W, the A-branch does not contain the ubiquinone Q(A); this facilitates the study of P(+)Q(B)(-) formation. Furthermore, the D mutation G(M203)D introduces an aspartic acid residue near B(A). Together these mutations impede electron transfer through the A-branch. The B-branch contains two bacteriopheophytins, Phi(B) and H(B), and a ubiquinone, Q(B.) Phi(B) replaces the monomer bacteriochlorophyll B(B) as a result of the L mutation H(M182)L. In the LDHW mutant we find 35-45% B-branch electron transfer, the highest yield reported so far. Transient absorption spectroscopy at 10 K, where the absorption bands due to the Q(X) transitions of Phi(B) and H(B) are well resolved, shows simultaneous bleachings of both absorption bands. Although photoreduction of the bacteriopheophytins occurs with a high yield, no significant (approximately 1%) P(+)Q(B)(-) formation was found.  相似文献   

13.
The localization of the N- and C-terminal regions of pigment-binding polypeptides of the bacterial photosynthetic apparatus of Rhodobacter sphaeroides was investigated by proteinase K treatment of chromatophore and spheroplast-derived vesicles and amino acid sequence determination. Under conditions of proteinase K treatment of chromatophores, which left the in vivo absorption spectrum and the membrane intact, 15 and 46 amino acyl residues from the N-terminal regions of the L and M subunits, respectively, of the reaction center polypeptides were removed. The N termini are therefore exposed on the cytoplasmic surface of the membrane. The C-terminal domain of the light-harvesting B800-850 alpha and B870 alpha polypeptides was found to be exposed on the periplasmic surface of the membrane. A total of 9 and 13 amino acyl residues were cleaved from the B800-850 alpha and B870 alpha polypeptides, respectively, when spheroplasts were treated with proteinase K. The N-terminal regions of the alpha polypeptides were not digested in either membrane preparation and were apparently protected from proteolytic attack. Seven N-terminal amino acyl residues of the B800-850 beta polypeptide were removed after the digestion of chromatophores. C-terminal residues were not removed after the digestion of chromatophores or spheroplasts. The C termini seem to be protected from protease attack by interaction with the membrane. Therefore, the N-terminal regions of the beta polypeptides are exposed on the cytoplasmic membrane surface. The C termini of the beta polypeptides are believed to point to the periplasmic space.  相似文献   

14.
The bacterial photosynthetic reaction center (RC) uses light energy to catalyze the reduction of a bound quinone molecule Q(B) to quinol Q(B)H(2). In RCs from Rhodobacter sphaeroides the protons involved in this process come from the cytoplasm and travel through pathways that involve His-H126 and His-H128 located near the proton entry point. In this study, we measured the pH dependence from 4.5 to 8.5 of the binding of the proton transfer inhibitor Cd(2+), which ligates to these surface His in the RC and inhibits proton-coupled electron transfer. At pH <6, the negative slope of the logarithm of the dissociation constant, K(D), versus pH approaches 2, indicating that, upon binding of Cd(2+), two protons are displaced; i.e., the binding is electrostatically compensated. At pH >7, K(D) becomes essentially independent of pH. A theoretical fit to the data over the entire pH range required two protons with pK(A) values of 6.8 and 6.3 (+/-0.5). To assess the contribution of His-H126 and His-H128 to the observed pH dependence, K(D) was measured in mutant RCs that lack the imidazole group of His-H126 or His-H128 (His --> Ala). In both mutant RCs, K(D) was approximately pH independent, showing that Cd(2+) does not displace protons upon binding in the mutant RCs, in contrast to the native RC in which His-H126 and His-H128 are the predominant contributors to the observed pH dependence of K(D). Thus, Cd(2+) inhibits RC function by binding to functionally important histidines.  相似文献   

15.
To explore the influence of the I(L177)H single mutation on the properties of the nearest bacteriochlorophylls (BChls), three reaction centers (RCs) bearing double mutations were constructed in the photosynthetic purple bacterium Rhodobacter sphaeroides, and their properties and pigment content were compared with those of the correspondent single mutant RCs. Each pair of the mutations comprised the amino acid substitution I(L177)H and another mutation altering histidine ligand of BChl P(A) or BChl B(B). Contrary to expectations, the double mutation I(L177)H+H(L173)L does not bring about a heterodimer RC but causes a 46nm blue shift of the long-wavelength P absorbance band. The histidine L177 or a water molecule were suggested as putative ligands for P(A) in the RC I(L177)H+H(L173)L although this would imply a reorientation of the His backbone and additional rearrangements in the primary donor environment or even a repositioning of the BChl dimer. The crystal structure of the mutant I(L177)H reaction center determined to a resolution of 2.9? shows changes at the interface region between the BChl P(A) and the monomeric BChl B(B). Spectral and pigment analysis provided evidence for β-coordination of the BChl B(B) in the double mutant RC I(L177)H+H(M182)L and for its hexacoordination in the mutant reaction center I(L177)H. Computer modeling suggests involvement of two water molecules in the β-coordination of the BChl B(B). Possible structural consequences of the L177 mutation affecting the coordination of the two BChls P(A) and B(B) are discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

16.
The light-induced Fourier transform infrared (FTIR) difference spectra corresponding to the photoreduction of either the HA bacteriopheophytin electron acceptor (HA-/HA spectrum) or the QA primary quinone (QA-/QA spectrum) in photosynthetic reaction centers (RCs) of Rhodopseudomonas viridis are reported. These spectra have been compared for wild-type (WT) RCs and for two site-directed mutants in which the proposed interactions between the carbonyls on ring V of HA and the RC protein have been altered. In the mutant EQ(L104), the putative hydrogen bond between the protein and the 9-keto C=O of HA should be affected by changing Glu L104 to a Gln. In the mutant WF(M250), the van der Waals interactions between Trp M250 and the 10a-ester C=O of HA should be modified. The characteristic effects of both mutations on the FTIR spectra support the proposed interactions and allow the IR modes of the 9-keto and 10a-ester C=O of HA and HA- to be assigned. Comparison of the HA-/HA and QA-/QA spectra leads us to conclude that the QA-/QA IR signals in the spectral range above 1700 cm-1 are largely dominated by contributions from the electrostatic response of the 10a-ester C=O mode of HA upon QA photoreduction. A heterogeneity in the conformation of the 10a-ester C=O mode of HA in WT RCs, leading to three distinct populations of HA, appears to be related to differences in the hydrogen-bonding interactions between the carbonyls of ring V of HA and the RC protein. The possibility that this structural heterogeneity is related to the observed multiexponential kinetics of electron transfer and the implications for primary processes are discussed. The effect of 1H/2H exchange on the QA-/QA spectra of the WT and mutant RCs shows that neither Glu L104 nor any other exchangeable carboxylic residue changes appreciably its protonation state upon QA reduction.  相似文献   

17.
There are basic structural similarities between plant PS II and bacterial RCs of the Chloroflexaceae and Rhodospirillaceae. These RCs are referred to as PS II-type RCs. A similar relationship of PS I RC to PS II-type RCs has not been established. Although plant PS I and PS II RCs show structural and functional differences, they also share similarities. Therefore, the A and B polypeptides of PS I were searched for PS II D1 and D2 polypeptide-like sequences. An alignment without gaps was found between PS II-type D2/M helix IV and PS I B helix X, as well as a weaker alignment of PS II-type D1/L with PS I B helix X. No comparable alignment with PS I A was found. In the M/D2 alignment there were eight identities and some conservative substitutions in twenty nine residues. PS I B helix X appeared to contain a modified chlorophyll dimer and monomer binding site and a modified non-heme iron-quinone binding site. The conserved residue sequence was found only in RC polypeptides. The proposed chlorophyll dimer-monomer binding site was located transmembrane from the iron-sulfur cluster X binding site. The conserved residues generally are those that interact with prosthetic groups. Half of the conserved residues are located on the same side of the helix. Thus, although there are impediments to concluding firmly that PS I B helix X has a functional and evolutionary relatedness to the D2 PS II and bacterial M RC polypeptides, our analysis gives reasonable support to the idea.Abbreviation RC reaction center  相似文献   

18.
The pyridine nucleotide transhydrogenase of Escherichia coli has an alpha 2 beta 2 structure (alpha: Mr, 54,000; beta: Mr, 48,700). Hydropathy analysis of the amino acid sequences suggested that the 10 kDa C-terminal portion of the alpha subunit and the N-terminal 20-25 kDa region of the beta subunit are composed of transmembranous alpha-helices. The topology of these subunits in the membrane was investigated using proteolytic enzymes. Trypsin digestion of everted cytoplasmic membrane vesicles released a 43 kDa polypeptide from the alpha subunit. The beta subunit was not susceptible to trypsin digestion. However, it was digested by proteinase K in everted vesicles. Both alpha and beta subunits were not attacked by trypsin and proteinase K in right-side out membrane vesicles. The beta subunit in the solubilized enzyme was only susceptible to digestion by trypsin if the substrates NADP(H) were present. NAD(H) did not affect digestion of the beta subunit. Digestion of the beta subunit of the membrane-bound enzyme by trypsin was not induced by NADP(H) unless the membranes had been previously stripped of extrinsic proteins by detergent. It is concluded that binding of NADP(H) induces a conformational change in the transhydrogenase. The location of the trypsin cleavage sites in the sequences of the alpha and beta subunits were determined by N- and C-terminal sequencing. A model is proposed in which the N-terminal 43 kDa region of the alpha subunit and the C-terminal 30 kDa region of the beta subunit are exposed on the cytoplasmic side of the inner membrane of E. coli. Binding sites for pyridine nucleotide coenzymes in these regions were suggested by affinity chromatography on NAD-agarose columns.  相似文献   

19.
Chuang JI  Boxer SG  Holten D  Kirmaier C 《Biochemistry》2006,45(12):3845-3851
We present studies on a series of photosynthetic reaction center (RC) mutants created in the background of the Rhodobacter capsulatus D(LL) mutant, in which the D helix of the M subunit has been substituted with that from the L subunit. Previous work on the D(LL) mutant in chromatophore preparations showed that RCs assembled without the bacteriopheophytin H(L) electron acceptor and performed no charge separation following light absorption. We have successfully isolated poly-His-tagged D(LL) RCs by using the detergent Deriphat 160-C and shown that the RCs are devoid of H(L). The excited state of the primary electron donor, P*, is found to have a lifetime of 180 +/- 20 ps and to decay exclusively (>95%) via internal conversion to the ground state, with no evidence for formation of any charge-separated intermediates. By additional mutation in the D(LL) background of two residues that affect the P/P+ oxidation potential and one that facilitates M-side electron transfer, we achieve an unprecedented 70% yield of P+ H(M)-, more than doubling the highest yield of this state achieved previously. This result underscores the importance of the relative free energies of P* and the charge-separated states in governing the rates and yields of electron transfer in bacterial RCs and provides a basis for systematically investigating M-side electron transfer without any competition from the native L-side pathway.  相似文献   

20.
The influence of metal ion (Cd(2+), Zn(2+), Ni(2+)) binding on the electrogenic phases of proton transfer connected with reduction of quinone Q(B) in chromatophores from Rhodobacter sphaeroides was studied by time-resolved electric potential changes. In the presence of metals, the electrogenic transients associated with proton transfer on first and second flash at pH 8 were found to be slower by factors of 3-6. This is essentially the same effect of metal binding that was observed on optical transients in isolated reaction centers (RC), where the metal ion was shown to inhibit proton transfer [Paddock, M. L., Graige, M. S., Feher, G., and Okamura, M. Y. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 6183-6188]. The effect of metal binding on the kinetics in chromatophores is, therefore, similarly attributed to inhibition of proton uptake, which becomes rate-limiting. A striking observation was an increase in the amplitude of the electrogenic proton-uptake phase after the first flash with bound metal ion. We attribute this to a loss of internal proton rearrangement, requiring that the protons that stabilize Q(B)(-) come from solution. In mutant RCs, in which His-H126 and His-H128 are replaced with Ala, the apparent binding of Cd(2+) and Ni(2+) was decreased, showing that the binding site of these metal ions is the same as found in RC crystals [Axelrod, H. L., Abresch, E. C., Paddock, M. L., Okamura, M. Y., and Feher, G. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 1542-1547]. Therefore, the unique proton entry point near His-H126, His-H128, and Asp-M17 that was identified in isolated RCs is also the entry point in chromatophores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号