首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
 The effect of three pesticides on the initiation and early development of arbuscular mycorrhiza in cotton was examined in experiments under controlled conditions. The fungicides Terrazole and Terraclor initially inhibited mycorrhizal infection of roots of cotton. The inhibition disappeared after 4 weeks, and neither fungicide had a lasting effect. The nematicide Fenamiphos slightly increased shoot dry weight at 6–10 weeks from planting and had no effect on mycorrhizal infection. We conclude that these pesticides have no sustained, detrimental effect on mycorrhizal infection or growth of cotton seedlings when applied at recommended rates. Accepted: 30 May 1997  相似文献   

2.
 A stepwise procedure was investigated to determine the optimal conditions for the establishment of Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe in dual in vitro culture with Ri T-DNA-transformed roots of Daucus carota L. Glomus mosseae spores germinated best in 10 mm Tris or MES-buffered medium at pH values just above neutral. Growth of hyphae from germinated spores was much greater in the presence of Tris than MES, eg. 8 mm versus 4 mm per spore for Tris and MES, respectively, at pH 7.2. Roots exhibited a broad pH optimum for growth of 6.0–7.0 in both MES and Tris, but did not grow well above pH 7.5. In addition, purified gelling agent, gellan gum, was utilized to lower the P concentration of media. With these factors combined, mycorrhizas were successfully established in 14% of dual cultures. Accepted: 5 March 1997  相似文献   

3.
 The effect of the saprobe fungi Wardomyces inflatus (Marchal) Hennebert, Paecilomyces farinosus (Holm & Gray) A. H. S. Brown & G. Sm., Gliocladium roseum Bain., Trichoderma pseudokoningii Rifai and T. harzianum Rifai, isolated from sporocarps of Glomus mosseae, on arbuscular mycorrhizal (AM) colonisation and plant dry matter of soybean was studied in 2/3 and 1/5 diluted soils in a greenhouse trial. Soil dilution to 1/5 had no effect on shoot dry matter of soybean but decreased AM colonisation and root dry weight of plants. CFU of saprobe fungi, except T. harzianum, were higher in 1/5 than in 2/3 diluted soils. W. inflatus and Gliocladium roseum decreased the shoot dry weight of soybean plant when inoculated together with Glomus mosseae. The saprobe fungi P. farinosus and T. pseudokoningii increased the shoot dry weights of plants grown in 1/5 diluted soil. The shoot dry weight and AM colonisation in 1/5 diluted soil were also increased when T. harzianum was inoculated together with Glomus mosseae. Thus, saprobe fungi increased AM colonisation of soybean plants by indigenous endophytes. The AM colonisation of plants at both soil dilutions was increased by Glomus mosseae. The highest level of AM colonisation was observed when P. farinosus and T. pseudokoningii were inoculated together Glomus mosseae. The dilution of soils influenced the interaction between inoculated microorganisms and their effect on plant growth. Accepted: 7 June 1999  相似文献   

4.
5.
 The 5.8 S subunit and flanking internal transcribed spacer (ITS) regions in nuclear ribosomal DNA (rDNA) from spores of Glomus mosseae FL156 and UK118 were amplified by polymerase chain reaction (PCR) using ITS1 and ITS4 as primers. The amplification product from template DNA of UK118 was cloned and sequenced (569 bp); the amplified DNA from FL156 was sequenced directly (582 bp). There was a 95% sequence similarity between DNAs amplified from the two isolates; in contrast, major dissimilarities with partial sequences of seven other glomalean taxa were observed. Four oligonucleotide sequences unique to Glomus mosseae were identified as potential primers. Their specificity to Glomus mosseae was assessed by PCR amplification of genomic DNA from spores from 36 glomalean fungi: 13 isolates of Glomus mosseae, two Glomus monosporum, 10 other Glomus isolates, and 11 other glomalean taxa from each of four other genera. The Glomus mosseae isolates were from a broad range of temperate zone agricultural soils. Oligonucleotide pair GMOS1 : GMOS2 primed specific amplification of an oligonucleotide sequence (approximately 400 bp) present in all Glomus mosseae isolates and two isolates of the closely related Glomus monosporum. This primer pair did not prime PCR when the template consisted of DNA from any of the other glomalean fungi or any of the nonmycorrhizal controls. In addition, a 24-mer oligonucleotide, designated GMOS5, hybridized with Glomus mosseae and Glomus monosporum DNA amplified by PCR using primer pairs ITS1 : ITS4 and GMOS1 : GMOS2. Colony-blot assays showed that GMOS5 hybridized to 100% and 97% of E. coli pUC19 clones of amplification products from Glomus mosseae FL156 and UK118 DNA templates, respectively, indicating that nearly all clones contained an homologous sequence. GMOS5 was used successfully to detect specifically Glomus mosseae in DNA extracted from colonized sudan grass (Sorghum sudanense L.) roots and amplified by PCR using the primer pair GMOS1 : GMOS2. The results confirm several previous indications that Glomus mosseae and Glomus monosporum are indistinguishable taxonomic entities. Accepted: 14 February 1998  相似文献   

6.
7.
 A reliable inoculum, free from other microorganisms, to produce arbuscular mycorhizal (AM) plants is of the greatest importance when studying the interaction between AM plants and soil microorganisms. We investigated the colonization of leeks from monoxenic in vitro-produced Glomus intraradices spores. The isolated spores were produced using a two-compartment in vitro growth system previously described. A spore suspension was used as inoculum and was compared to the inoculum potential of endomycorrhizal root segments of pot-grown leek (Allium porrum L.) plants. The leeks were grown in a controlled environment and two types of sterilized growth media were tested: calcined montmorillonite clay and a soil mix. Root colonization progressed faster in the soil mix than in the clay. However, in this medium, after an initial delay, root colonization from in vitro-produced spores was essentially the same as that observed with the root-segment inoculum, reaching 44% and 58% respectively, after 16 weeks. Leek roots colonized by the monoxenically-produced spores harbored only the studied AMF fungi while the roots colonized from the root segments were substantially contaminated by other fungi. Accepted: 25 December 1998  相似文献   

8.
 The Glomus mosseae 3-phosphoglycerate kinase (PGK) gene encodes a polypeptide of 416 amino acids. A synthetic peptide was designed to the C-terminus of the polypeptide for the production of a polyclonal antibody. The antibody was tested against the synthetic peptide in an immuno-dot blot and was then used to investigate the asymbiotic and symbiotic accumulation of the PGK protein. Western blot analysis revealed that a polypeptide of approximately 45 kDa accumulated in G. mosseae-colonised tomato roots; this is similar to the theoretical molecular weight of 44.764 kDa. The protein was not detected in non-mycorrhizal roots. Quantitative immuno-dot blotting revealed that the polypeptide accumulated in germinating spores and hyphae of G. mosseae and also in tomato roots colonised by G. mosseae. The amount detected in the mycorrhizal root system was significantly higher than that found in germinating sporocarps. The variation in the levels of glycolytic activity in the symbiotic and asymbiotic developmental stages of G. mosseae is discussed. Accepted: 20 April 2000  相似文献   

9.
 The effects of sterilization time, sterilizing agents (ethanol, Chloramine T, calcium hypochlorite) and antibiotics (streptomycin and gentamycin) on Glomus mosseae (BEG 12) sporocarp germination and contamination were evaluated. Incubation for 10 s in 96 % ethanol, followed by 10 min in a solution of 2% Chloramine T, 0.02% streptomycin, 0.01% gentamycin and Tween 20, and then 6 min in 6% calcium hypochlorite greatly reduced fungal and bacterial contamination from sporocarps and caused little change in germination rate in water agar medium. Accepted: 4 March 1999  相似文献   

10.
 Genomic phage libraries of arbuscular mycorrhizal fungi were constructed for the first time, and clones containing ribosomal RNA (rRNA) genes isolated for Glomus mosseae and Scutellospora castanea. The number of rDNA clones per library indicates that these libraries can be also used to isolate genes with low copy numbers. Sequences of the 18S rRNA gene, of the internal transcribed spacer and of the 5.8S rRNA gene were analysed and compared. Differences between the 18S and the 5.8S rRNA genes were few and in the range of variation found for other fungi. In contrast, the internal transcribed spacers of G. mosseae and S. castanea were highly variable, showing the potential of this region for the identification of different species or isolates. Interestingly, nucleotide exchanges were found in this region when the sequence for G. mosseae was compared to those of two other clones of the same isolate. Accepted: 10 November 1995  相似文献   

11.
We studied the production of xyloglucanase enzymes of pea and lettuce roots in the presence of saprobe and arbuscular mycorrhizal (AM) fungi. The AM fungus Glomus mosseae and the saprobe fungi Fusarium graminearum, Fusarium oxysporum-126, Trichoderma harzianum, Penicillium chrysogenum, Pleurotus ostreatus and Aspergillus niger were used. G. mosseae increased the shoot and root dry weight of pea but not of lettuce. Most of the saprobe fungi increased the level of mycorrhization of pea and lettuce, but only P. chrysogenum and T. harzianum inoculated together with G. mosseae increased the dry weight of pea and lettuce respectively. The AM and saprobe fungi increased the production of xyloglucanases by plant roots. The level of xyloglucanase activities and the number of xyloglucanolytic isozymes in plants inoculated with G. mosseae and most of the saprobe fungi tested were higher than when both microorganisms were inoculated separately. The possible relationship between xylogucanase activities and the ability of AM and saprobe fungi to improve the dry weight and AM root colonization of plants was discussed.  相似文献   

12.
Rabbit polyclonal antibodies were produced against a soluble protein fraction from a vesicle and spore mixture of the arbuscular mycorrhizal fungus (AMF) Glomus intraradices. The protocol for isolation of vesicles and spores from plant roots was optimized to minimize debris contamination. Protein extract purification and preparation for immunization was adapted to increase protein content and immunogenicity. Active antisera were produced starting from the second boost immunization. Antibodies obtained were specific for surface antigens of AMF and revealed different patterns of soluble protein antigens in G. intraradices, G. constrictum and an unidentified Glomus species. Accepted: 6 December 2000  相似文献   

13.
 Fungal enzyme activities were quantified in an interaction study between the fungus Glomus intraradices and the pea pathogen Aphanomyces euteiches. Fungal and host enzymes were separated by polyacrylamide gel electrophoresis and the activity of A. euteiches–specific glucose-6-phosphate dehydrogenase (Gd), phosphoglucomutase and peptidase (PEP) enzymes were quantified by densitometry. The activity of A. euteiches–specific enzymes increased until 14 days after inoculation with A. euteiches, and then decreased. The plants preinoculated with G. intraradices showed no symptoms of severe root rot even though the pathogen was present and active in these plants. Thus, plants preinoculated with G. intraradices were more tolerant of infection with A. euteiches than non-mycorrhizal plants. This effect was evident even though the A. euteiches infection levels of mycorrhizal and non-mycorrhizal plants were the same. A. euteiches enzyme activities in the mycorrhizal plants were different to those in non-mycorrhizal plants. The peaks of PEP and Gd enzyme activity of A. euteiches were lower and the development of A. euteiches PEP activity was later in the mycorrhizal plants than in the non-mycorrhizal plants. Accepted: 14 November 1996  相似文献   

14.
 Despite the recognized importance of arbuscular mycorrhizal (AM) fungi in forest ecosystems, their is little information about their occurrence in natural forest ecosystems of Patagonia. This study investigated root associations in two Austrocedrus forests and the seasonal dynamics of AM of Austrocedrus chilensis. Most of the vascular flora in both forests had arbuscular mycorrhizae (80.5 and 70.5% of species, respectively). The dynamics of mycorrhiza formation and spore number did not differ between these forests but varied with the season. Root colonization was lowest in September at the end of the quarter with the most rain, and spore numbers were highest in September and in December at the beginning of the dry season. Accepted: 14 February 1998  相似文献   

15.
16.
Arbuscular mycorrhizal (AM) symbioses are known to play a role in increased resistance of plants against soilborne pathogens. Mechanisms involved in this phenomenon are not yet well understood. This work investigates possible roles of endoproteolytic activities in bioprotection of Pisum sativum roots by Glomus mosseae against Aphanomyces euteiches . First, it is demonstrated that bioprotection occurs only in pre-mycorrhizal plants. Second, endoproteolytic activities were analysed qualitatively and quantitatively during AM symbiosis, in plants infected with either zoospores or mycelium of A. euteiches , and in mycorrhizal plants infected with the pathogen. In mycorrhizal symbiosis a progressive increase in endoproteolytic activities was observed following root colonization by G. mosseae . By contrast, in roots inoculated with A. euteiches , a drastic increase in endoproteolytic activities was observed which was correlated with the amount of pathogen occurring in roots. Qualitative differences were seen among the endoproteolytic activities detected in roots inoculated with zoospores or mycelium. The constitutive as well as mycorrhizal and pathogen-induced activities were further characterized as 'trypsin-like' serine endoproteases. Interestingly, in a situation of bioprotection, only low levels of the activities normally associated with the infection by A. euteiches were detected, suggesting that the synthesis of these proteins is directly linked to the growth or virulence of the pathogen.  相似文献   

17.
The relationships between vegetational and arbuscular mycorrhizal (AM) dynamics were investigated in an old-field succession in the western Italian Alps. Vegetation and AM colonization were determined in eight sites corresponding to different stages of successional dynamics: (a) a field under cultivation; (b) fields abandoned for 1, 2 and 3 years supporting ruderal vegetation; (c) grasslands; (d) shrublands; (e) early wood communities; (f) mature woods. AM colonization was evaluated on the roots of representative plants from each community. The data thus obtained, together with those from the literature, were then used to calculate the plant community mycorrhizal index. This index provides qualitative and quantitative information concerning the relative percentage of non-mycorrhizal, AM and ectomycorrhizal plant cover in an entire plant community. The AM inoculum potential of each site was also determined using a bait approach. Farming disturbance temporarily reduced soil infectivity. Non-mycorrhizal ruderal annuals dominated after 1 year abandonment and covered 90–100 % of the surface. After 2 or 3 years, a rapid change to AM-colonized competitive and competitive-ruderal perennials was observed. The increase in AM inoculum was associated with an increase in floristic richness and equitability in the community. AM were also dominant in the shrublands and early wood communities, but gave way to ectomycorrhizal species in the mature woods. The observed AM inoculum potentials are in accordance with these findings. The results of this study further emphasize the need to take into account AM infection in plans for the renaturalization of degraded areas. Accepted: 16 June 1999  相似文献   

18.
 Ectomycorrhizas (EcM) and arbuscular mycorrhizas (AM) were screened for in saplings of 14 EcM tree species from the N'Dupé and Korup National Park rainforests, SW Cameroon, belonging to Caesalpiniaceae and Uapacaceae. The pattern of EcM and AM colonisation of a dual mycorrhizal species from this rainforest (Uapaca staudtii, Uapacaceae) was compared with dual EcM/AM colonisation of Leptospermum scoparium (Myrtaceae) from New Zealand. Both species were collected in a range of habitats. EcM and AM colonisation differed among species in the Korup National Park rainforest: 12 species belonging to the Caesalpiniaceae (Amherstieae) were consistently EcM, and AM structures occurred occasionally in six of them; two other species belonging to Caesalpiniaceae (Afzelia bipindensis) and Uapacaceae (U. staudtii) were dual mycorrhizal with variable levels of colonisation by both EcM and AM fungi. EcM and AM dual colonisation varied with both habitat and identity of the partners. The presence of EcM fungi in most of the root samples of U. staudtii and a negative relationship between AM and EcM colonisation within the same root system suggested a greater EcM affinity of this species. In contrast, most root samples of L. scoparium were colonised by AM, but only a few by EcM. Genuine dual EcM/AM associations in root samples of U. staudtii where the two mycorrhizal types co-occurred could be attributed to an AM-EcM succession. However, differences between predicted and observed frequencies of genuine dual EcM/AM associations in several samples of both U. staudtii and L. scoparium indicated that other factors influenced dual EcM/AM associations. The results of this study showed the importance of the identity of the host species in determining the pattern of dual EcM and AM colonisation. Accepted: 18 September 1998  相似文献   

19.
 The effect of various organic soil amendments on arbuscular myorrhizal (AM) fungal activity on rice plants was tested under greenhouse and field conditions with reference to sheath blight (ShB) disease caused by Rhizoctonia solani. AM spore density, per cent infection, and intensity of infection were increased by organic amendments, whilst ShB disease was decreased. Certain amendments, especially green leaf manure, stimulated arbuscule development in rice plants. Mycorrhiza formation and sporulation were higher with healthy rice plants than with rice plants infected with R. solani. Our results indicate the possibility of using selective organic amendments to enhance development of native AM fungi and thus reduce disease incidence. Accepted: 9 November 1995  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号