首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Selective pharyngeal brain cooling]   总被引:1,自引:0,他引:1  
Whole-body cooling can be used in the treatment of various brain pathologies, for example, after hypoxic events. Potential complications include haemodynamic instability, coagulation disorders and infection. Selective brain cooling (SBC) would therefore appear to make good sense. In an animal model a new approach to SBC was therefore evaluated. A rat weighing 350 g was sedated with alpha-chloralose (40 mg/kg/h) and d-tubocurarine (4.05 mg/kg/h), mechanically ventilated and placed on a heating pad. A thermocouple was introduced into the somatosensory cortex to a depth of 2.5 mm. SBC was achieved using a novel approach: PTFE tubing (ID 100 microns) with an inlet and an outlet was wrapped around and glued to a piece of wood, and introduced non traumatically into the pharynx. The tubing was perfused with cold water (+4 degrees C). Under SBC the cortical temperature dropped from 38.4 degrees C to 27.7 degrees C while the core temperature remained stable. In an animal model SBC was successfully accomplished via the pharynx. Further studies should now be done to evaluate the effectiveness of this approach in larger animals with potentially different anatomical features.  相似文献   

2.
Selective brain cooling (SBC) is defined as a brain temperature cooler than the temperature of arterial blood from the trunk. Surrogate measures of arterial blood temperature have been used in many published studies on SBC. The use of a surrogate for arterial blood temperature has the potential to confound proper identification of SBC. We have measured brain, carotid blood, and rectal temperatures in conscious sheep exposed to 40, 22, and 5 degrees C. Rectal temperature was consistently higher than arterial blood temperature. Brain temperature was consistently cooler than rectal temperature during all exposures. Brain temperature only fell below carotid blood temperature during the final few hours of 40 degrees C exposure and not at all during the 5 degrees C exposure. Consequently, using rectal temperature as a surrogate for arterial blood temperature does not provide a reliable indication of the status of the SBC effector. We also show that rapid suppression of SBC can result if the animals are disturbed.  相似文献   

3.
An influence of brain and trunk temperatures controlled independently of each other by means of artificial heat exchangers, on the intensity of natural selective brain cooling (SBC) was studied in 6 conscious goats. Intensity of SBC was markedly enhanced by increasing brain temperature. On the other hand, a rise of trunk temperature with the cerebral temperature clamped at 39 degrees C or 40 degrees C, reduced SBC intensity in spite of a simultaneous increase in the respiratory evaporative heat loss. When brain temperature was clamped at 41 degrees C, the magnitude of SBC was essentially independent of trunk temperature. These results suggest that during hyperthermia a competition exists between trunk and brain for cool nasal blood.  相似文献   

4.
1. Experiments were performed to investigate the effects of cortical lesions on convulsive behaviour. Rats were lesioned in the left motor or sensory cortex by aspirating cortical tissue 2 to 3 months prior to the elicitation of convulsions. Convulsions were induced in the awake rats by the GABA antagonist Na-penicillin (Na-PCN) which was applied into the superficial layer of the foreleg field of their right motor cortex. Convulsive activity was recorded by means of the EEG. 2. The time courses of convulsive cortical activity were similar in the animals without or with a cortical lesion. Generalized seizures belonged to the tonic-clonic type in both intact and lesioned rats. 3. The early period of convulsive activity was described by the time to the onset (latency) of the first convulsive potential, jerk and seizure, and by the mean repetition rate of jerks during the first ten minutes, and the duration of the first generalized seizure. None of these parameters was significantly affected by a cortical lesion. 4. The median duration of the convulsive activity in intact animals was 162 min. In rats with a lesion in the sensory cortex it raised to more than 540 min while a lesion of the motor cortex increased the median duration to more than 273 min. The differences between intact and lesioned rats were significant (p less than 0.01 and p = 0.05, respectively). 5. The median time to the onset of the last generalized seizure in intact rats corresponded to 92 min with respect to the time of Na-PCN application. In rats with a lesion of the sensory cortex the last seizure was generated 433 min and in animals with a lesion of the motor cortex 167 min after Na-PCN treatment of the motor cortex of one side. This increase of latency of the last seizure was significant for the rats with a lesioned sensory area (p less than 0.02) or motor area (p = 0.05) compared to that of the intact rats. Additionally, the number of generalized seizures was significantly (p less than 0.01) increased by both groups of rats with a lesion of the motor or sensory cortex. 6. It is suggested that a substantial lesion of the cortex decreases predominantly the intrinsic cortical inhibition thus destabilizing brain function. This destabilizing effect becomes pronounced under the condition of superimposed suppression of the GABAergic cortical component. It is concluded that the intrinsic cortical inhibitory mechanism which in the intact brain acts against hyperexcitation and prevents the development of neuronal synchronization, i.e. the formation of seizures, becomes less effective in performing this task once an abnormal brain activation has developed.  相似文献   

5.
A three-dimensional mathematical model was developed to examine the transient and steady-state temperature distribution in the human brain during selective brain cooling (SBC) by unilateral intracarotid freezing-cold saline infusion. To determine the combined effect of hemodilution and hypothermia from the cold saline infusion, data from studies investigating the effect of these two parameters on cerebral blood flow (CBF) were pooled, and an analytic expression describing the combined effect of the two factors was derived. The Pennes bioheat equation used the thermal properties of the different cranial layers and the effect of cold saline infusion on CBF to propagate the evolution of brain temperature. A healthy brain and a brain with stroke (ischemic core and penumbra) were modeled. CBF and metabolic rate data were reduced to simulate the core and penumbra. Simulations using different saline flow rates were performed. The results suggested that a flow rate of 30 ml/min is sufficient to induce moderate hypothermia within 10 min in the ipsilateral hemisphere. The brain with stroke cooled to lower temperatures than the healthy brain, mainly because the stroke limited the total intracarotid blood flow. Gray matter cooled twice as fast as white matter. The continuously falling hematocrit was the main time-limiting factor, restricting the SBC to a maximum of 3 h. The study demonstrated that SBC by intracarotid saline infusion is feasible in humans and may be the fastest method of hypothermia induction.  相似文献   

6.
Selective brain cooling (SBC) is defined as the lowering of brain temperature below arterial blood temperature. Artiodactyls employ a carotid rete, an anatomical heat exchanger, to cool arterial blood shortly before it enters the brain. The survival advantage of this anatomy traditionally is believed to be a protection of brain tissue from heat injury, especially during exercise. Perissodactyls such as horses do not possess a carotid rete, and it has been proposed that their guttural pouches serve the heat-exchange function of the carotid rete by cooling the blood that traverses them, thus protecting the brain from heat injury. We have tested this proposal by measuring brain and carotid artery temperature simultaneously in free-living horses. We found that despite evidence of cranial cooling, brain temperature increased by about 2.5 degrees C during exercise, and consistently exceeded carotid temperature by 0.2-0.5 degrees C. We conclude that cerebral blood flow removes heat from the brain by convection, but since SBC does not occur in horses, the guttural pouches are not surrogate carotid retes.  相似文献   

7.
A three-dimensional mathematical model was developed to examine the induction of selective brain cooling (SBC) in the human brain by intracarotid cold (2.8 degrees C) saline infusion (ICSI) at 30 ml/min. The Pennes bioheat equation was used to propagate brain temperature. The effect of cooled jugular venous return was investigated, along with the effect of the circle of Willis (CoW) on the intracerebral temperature distribution. The complete CoW, missing A1 variant (mA1), and fetal P1 variant (fP1) were simulated. ICSI induced moderate hypothermia (defined as 32-34 degrees C) in the internal carotid artery (ICA) territory within 5 min. Incorporation of the complete CoW resulted in a similar level of hypothermia in the ICA territory. In addition, the anterior communicating artery and ipsilateral posterior communicating artery distributed cool blood to the contralateral anterior and ipsilateral posterior territories, respectively, imparting mild hypothermia (35 and 35.5 degrees C respectively). The mA1 and fP1 variants allowed for sufficient cooling of the middle cerebral territory (30-32 degrees C). The simulations suggest that ICSI is feasible and may be the fastest method of inducing hypothermia. Moreover, the effect of convective heat transfer via the complete CoW and its variants underlies the important role of CoW anatomy in intracerebral temperature distributions during SBC.  相似文献   

8.
Central administration of interleukin-1 beta (IL-1 beta) increases cerebral blood flow (CBF) and body temperature, in part, through the production of prostaglandins. In previous studies, the temporal relationship between these effects of IL-1 beta have not been measured. In this study, we hypothesized that the increase in CBF occurs before any change in brain or body temperature and that the cerebrovascular and thermoregulatory effects of IL-1 beta would be attenuated by inhibiting the production of nitric oxide (NO). Adult male rats received 100 ng intracerebroventricular (icv) injection of IL-1 beta, and cortical CBF (cCBF) was measured by laser-Doppler in the contralateral cerebral cortex. A central injection of IL-1 beta caused a rapid increase in cCBF to 133 +/- 12% of baseline within 15 min and to an average of 137 +/- 12% for the remainder of the 3-h experiment. Brain and rectal temperature increased by 0.4 +/- 0.2 and 0.5 +/- 0.2 degrees C, but not until 45 min after IL-1 beta administration. Pretreatment with N(omega)-nitro-L-arginine methyl ester (L-NAME; 5 mg/kg iv) completely prevented the changes in cCBF and brain and rectal temperature induced by IL-1 beta. L-Arginine (150 mg/kg iv) partially reversed the effects of L-NAME and resulted in increases in both cCBF and temperature. These findings suggest that the vasodilatory effects of IL-1 beta in the cerebral vasculature are independent of temperature and that NO plays a major role in both the cerebrovascular and thermoregulatory effects of centrally administered IL-1 beta.  相似文献   

9.
The mechanism of selective brain cooling (SBC) allows the brain to remain cooler than the rest of the body. This paper aims to provide new ideas to better understand SBC, emphasizing how it works, how it is controlled and what its role is. There are two distinct types of SBC in homeotherms: (1) using precooling of arterial blood destined for the brain, with cool venous blood returning from the nose and head skin, (2) using venous blood to cool the brain directly. There is a common mechanism of control of SBC intensity. Reduced sympathetic activity leads to simultaneous dilation of the angular oculi veins, supplying the intracranial heat exchangers, and constriction of the facial veins, supplying the heart. Therefore, SBC is enhanced during heat exposure, endurance exercise, relaxed wakefulness and NREM sleep, and vanishes in the cold and during emotional distress. SBC is a multifunctional effector mechanism: it protects the brain from heat damage; it intensifies in dehydrated mammals, thereby saving water; it helps exercising animals delay exhaustion; it might thermally modulate alertness; it is used in diving animals to drop cerebral temperature much below its normal level, expanding diving capacity and protecting the brain from asphyxic damage. Altogether, SBC integrates both thermal and non-thermal regulatory functions.  相似文献   

10.
To investigate the role of the angularis oculi vein (AOV) in selective brain cooling (SBC), we measured brain and carotid blood temperatures in six adult female Dorper sheep. Halfway through the study, a section of the AOV, just caudal to its junction with the dorsal nasal vein, was extirpated on both sides. Before and after AOV surgery, the sheep were housed outdoors at 21-22°C and were exposed in a climatic chamber to daytime heat (40°C) and water deprivation for 5 days. In sheep outdoors, SBC was significantly lower after the AOV had been cut, with its 24-h mean reduced from 0.25 to 0.01°C (t(5) = 3.06, P = 0.03). Carotid blood temperature also was lower (by 0.28°C) at all times of day (t(5) = 3.68, P = 0.01), but the pattern of brain temperature was unchanged. The mean threshold temperature for SBC was not different before (38.85 ± 0.28°C) and after (38.85 ± 0.39°C) AOV surgery (t(5) =0.00, P = 1.00), but above the threshold, SBC magnitude was about twofold less after surgery. SBC after AOV surgery also was less during heat exposure and water deprivation. However, SBC increased progressively by the same magnitude (0.4°C) over the period of water deprivation, and return of drinking water led to rapid cessation of SBC in sheep before and after AOV surgery. We conclude that the AOV is not the only conduit for venous drainage contributing to SBC in sheep and that, contrary to widely held opinion, control of SBC does not involve changes in the vasomotor state of the AOV.  相似文献   

11.
This study aimed to identify brain regions with the least decreased cerebral blood flow (CBF) and their relationship to physiological parameters during human non-rapid eye movement (NREM) sleep. Using [(15)O]H(2)O positron emission tomography, CBF was measured for nine normal young adults during nighttime. As NREM sleep progressed, mean arterial blood pressure and whole brain mean CBF decreased significantly; arterial partial pressure of CO(2) and, selectively, relative CBF of the cerebral white matter increased significantly. Absolute CBF remained constant in the cerebral white matter, registering 25.9 +/- 3.8 during wakefulness, 25.8 +/- 3.3 during light NREM sleep, and 26.9 +/- 3.0 (ml.100 g(-1).min(-1)) during deep NREM sleep (P = 0.592), and in the occipital cortex (P = 0.611). The regression slope of the absolute CBF significantly differed with respect to arterial partial pressure of CO(2) between the cerebral white matter (slope 0.054, R = - 0.04) and frontoparietal association cortex (slope - 0.776, R = - 0.31) (P = 0.005) or thalamus (slope - 1.933, R = - 0.47) (P = 0.004) and between the occipital cortex (slope 0.084, R = 0.06) and frontoparietal association cortex (P = 0.021) or thalamus (P < 0.001), and, with respect to mean arterial blood pressure, between the cerebral white matter (slope - 0.067, R = - 0.10) and thalamus (slope 0.637, R = 0.31) (P = 0.044). The cerebral white matter CBF keeps constant during NREM sleep as well as the occipital cortical CBF, and may be specifically regulated by both CO(2) vasoreactivity and pressure autoregulation.  相似文献   

12.
Hypothermia, as well as anesthesia, are known to protect the brain against ischemia, hypoxia and other pathological damages. One of the mechanisms of this improvement could be by lowering brain function, and thereby lowering oxygen demand. We examined the effect of hypothermia on brain function and blood supply in awake and anesthetized rats and studied the interaction between partial ischemia and the responses to hypothermia. The brain function multiprobe (BFM) used enabled simultaneous measurements of cerebral blood flow (CBF), mitochondrial NADH redox state, extracellular K(+) concentration, DC potential and ECoG from the cerebral cortex in rats whose brain temperature was lowered by 5 degrees C. Hypothermia was induced in awake, anesthetized and brain ischemic-anesthetized rats. In anesthetized and ischemic-anesthetized rats, the time required for lowering the brain temperature by 5 degrees C was five times less than in the normal awake animals. No significant changes in CBF and NADH levels were found in response to hypothermia in the awake animals. In contrast, a significant decrease in extracellular K(+) concentration was recorded under hypothermia, probably due to the lower rate of depolarization. Hypothermia in anesthetized and in ischemic-anesthetized rats did not significantly affect the levels of mitochondrial NADH, CBF and extracellular K(+). Hypothermia under ischemia was expected to be more effective.  相似文献   

13.
To investigate the mechanisms underlying the neuroprotective effect of L-serine, permanent focal cerebral ischemia was induced by occlusion of the middle cerebral artery while monitoring cerebral blood flow (CBF). Rats were divided into control and L-serine-treated groups after middle cerebral artery occlusion. The neurological deficit score and brain infarct volume were assessed. Nissl staining was used to quantify the cortical injury. L-serine and D-serine levels in the ischemic cortex were analyzed with high performance liquid chromatography. We found that L-serine treatment: 1) reduced the neurological deficit score, infarct volume and cortical neuron loss in a dose-dependent manner; 2) improved CBF in the cortex, and this effect was inhibited in the presence of apamin plus charybdotoxin while the alleviation of both neurological deficit score and infarct volume was blocked; and 3) increased the amount of L-serine and D-serine in the cortex, and inhibition of the conversion of L-serine into D-serine by aminooxyacetic acid did not affect the reduction of neurological deficit score and infarct volume by L-serine. In conclusion, improvement in regional CBF by L-serine may contribute to its neuroprotective effect on the ischemic brain, potentially through vasodilation which is mediated by the small- and intermediate-conductance Ca2+-activated K+ channels on the cerebral blood vessel endothelium.  相似文献   

14.
By cooling the hypothalamus during hyperthermia, selective brain cooling reduces the drive on evaporative heat loss effectors, in so doing saving body water. To investigate whether selective brain cooling was increased in dehydrated sheep, we measured brain and carotid arterial blood temperatures at 5-min intervals in nine female Dorper sheep (41 +/- 3 kg, means +/- SD). The animals, housed in a climatic chamber at 23 degrees C, were exposed for nine days to a cyclic protocol with daytime heat (40 degrees C for 6 h). Drinking water was removed on the 3rd day and returned 5 days later. After 4 days of water deprivation, sheep had lost 16 +/- 4% of body mass, and plasma osmolality had increased from 290 +/- 8 to 323 +/- 9 mmol/kg (P < 0.0001). Although carotid blood temperature increased during heat exposure to similar levels during euhydration and dehydration, selective brain cooling was significantly greater in dehydration (0.38 +/- 0.18 degrees C) than in euhydration (-0.05 +/- 0.14 degrees C, P = 0.0008). The threshold temperature for selective brain cooling was not significantly different during euhydration (39.27 degrees C) and dehydration (39.14 degrees C, P = 0.62). However, the mean slope of lines of regression of brain temperature on carotid blood temperature above the threshold was significantly lower in dehydrated animals (0.40 +/- 0.31) than in euhydrated animals (0.87 +/- 0.11, P = 0.003). Return of drinking water at 39 degrees C led to rapid cessation of selective brain cooling, and brain temperature exceeded carotid blood temperature throughout heat exposure on the following day. We conclude that for any given carotid blood temperature, dehydrated sheep exposed to heat exhibit selective brain cooling up to threefold greater than that when euhydrated.  相似文献   

15.
Consistent resting brain activity patterns have been repeatedly demonstrated using measures derived from resting BOLD fMRI data. While those metrics are presumed to reflect underlying spontaneous brain activity (SBA), it is challenging to prove that association because resting BOLD fMRI metrics are purely model-free and scale-free variables. Cerebral blood flow (CBF) is typically closely coupled to brain metabolism and is used as a surrogate marker for quantifying regional brain function, including resting function. Assessing the correlations between resting BOLD fMRI measures and CBF correlation should provide a means of linking of those measures to the underlying SBA, and a means to quantify those scale-free measures. The purpose of this paper was to examine the CBF correlations of 3 widely used neuroimaging-based SBA measures, including seed-region based functional connectivity (FC), regional homogeneity (ReHo), and amplitude of low frequency fluctuation (ALFF). Test-retest data were acquired to check the stability of potential correlations across time. Reproducible posterior cingulate cortex (PCC) FC vs regional CBF correlations were found in much of the default mode network and visual cortex. Dorsal anterior cingulate cortex (ACC) FC vs CBF correlations were consistently found in bilateral prefrontal cortex. Both ReHo and ALFF were found to be reliably correlated with CBF in most of brain cortex. None of the assessed SBA measures was correlated with whole brain mean CBF. These findings suggest that resting BOLD fMRI-derived measures are coupled with regional CBF and are therefore linked to regional SBA.  相似文献   

16.
To determine if rectal temperature is an adequate index of brain temperature during changing thermal conditions, we measured rectal, cerebral cortical, and carotid arterial blood temperatures simultaneously during whole body cooling in adult cats. The mean steady state rectal, brain and carotid arterial temperatures at the onset of cooling were: 39.2 +/- 0.2, 38.5 +/- 0.2, and 38.3 +/- 0.3 degrees C, respectively. Rectal temperature decreased faster than both brain and arterial blood, while only a small temperature difference was observed between brain and arterial blood, brain always exceeding blood. Rectal temperature cannot be considered an adequate index of brain temperature. Carotid arterial temperature is a better estimate of brain temperature.  相似文献   

17.
The aim of the present study was to clarify whether tissue hypoxia is involved in the autoregulatory dilatation of cerebrocortical vessels occurring at moderate arterial hypotension. In order to avoid hypoxia that may occur during arterial hypotension, in one part of the experiments the brain cortices were superfused with oxygen saturated (pO2, approximately 500 mm Hg) artificial cerebrospinal fluid (mock CSF). In the other part of the experiments arterial hypotension was induced without superfusing the brain cortices (closed skull). Mean arterial blood pressure (MABP) was decreased in both experimental groups by bleeding to 75-85 mm Hg for approximately 5 min, then the shed blood was reinfused. Changes in cortical vascular volume (CVV), mean transit time of cortical blood flow (tm), and blood flow (CBF) were measured through a cranial window with a microscope reflectometer. Although CSF pO2 differed markedly between the superfused and nonsuperfused experimental groups, arterial hypotension led to similar changes in CVV and tm in both groups. Due to the proper dilatation of the cerebrocortical arterioles, CBF was not altered by arterial hypotension in either of the groups. These results suggest that the brain cortex does not become hypoxic at moderate arterial hypotension and, consequently, incipient tissue hypoxia has no role in the autoregulatory dilatation of the cerebrocortical arterial network.  相似文献   

18.
We report that a brief electrical stimulation of the nucleus basalis of Meynert (NBM), the primary source of cholinergic projection to the cerebral cortex, induces a biphasic cerebral cortical blood flow (CBF) response in the somatosensory cortex of C57BL/6J mice. This CBF response, measured by laser Doppler flowmetry, was attenuated by the muscarinic type acetylcholine receptor antagonist atropine, suggesting a possible involvement of astrocytes in this type of CBF modulation. However, we find that IP3R2 knockout mice, which lack cytosolic Ca2+ surges in astrocytes, show similar CBF changes. Moreover, whisker stimulation resulted in similar degrees of CBF increase in IP3R2 knockout mice and the background strain C57BL/6J. Our results show that neural activity-driven CBF modulation could occur without large cytosolic increases of Ca2+ in astrocytes.  相似文献   

19.
In the present study, we investigated the effects of micro-injecting 2-chloroadenosine (2-CADO; an adenosine receptor agonist) into the thalamus alone and with theophylline (a nonspecific adenosine receptor antagonist) pretreatment on pentylenetetrazol (PTZ)-induced tonic-clonic seizures in male Wistar albino rats. Following intrathalamic 2-CADO injection alone or theophylline pretreatment, 50 mg kg(-1) PTZ was given ip after 1 and 24 hrs. The duration of epileptic seizure activity was recorded by cortical electroencephalogram (EEG), and seizure severity was behaviorally scored. Intrathalamic 2-CADO administration induced significant decreases in both seizure duration and seizure severity scores at 1 and 24 hrs, but the effects were more abundant on the seizures induced after 24 hrs. On the other hand, pretreatment with theophylline prevented the inhibitor effect of 2-CADO on seizure activity and increased both seizure duration and seizure scores. Present results suggest that the activation of adenosine receptors in the thalamus may represent another anticonvulsant/modulatory site of adenosine action during the course of the PTZ-induced generalized tonic-clonic seizures and provide additional data for the involvement of the adenosinergic system in the generalized seizures model.  相似文献   

20.
The effects of intravenous administration of a-phenyl N-tert-butyl nitrone (PBN) on cortical cerebral blood flow (CBF) were examined in Wistar rats under pentobarbital anesthesia and artificial ventilation. The cortical CBF in parietal cortex was measured by laser Doppler flowmetry. Intravenous administrations of 2 mg/kg and 20 mg/kg of PBN dose-dependently produced significant increases in cortical CBF and decreases in systemic blood pressure (BP). To examine whether these increased responses in cortical CBF produced by PBN were associated with the vasodilatation system of nitric oxide (NO), the NO synthase inhibitor L-NG-nitroarginine (L-NOArg), which is an analog of L-arginine, was used to inhibit the NO-related-vasodilatative system. Since the PBN-induced responses in the cortical CBF were much attenuated in L-NOArg-treated rats (30 mg/kg, iv.), it was inferred that NO-related vasodilatation was strongly associated with the PBN-induced increase in cortical CBF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号