首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
BACKGROUND: The Btk (Bruton's tyrosine kinase) gene has been shown to be mutated in the human immunodeficiency disease, XLA (X-linked agammaglobulinemia). Btk is a member of the Tec family of cytosolic protein tyrosine kinases with distinct functional domains PH, TH, SH3, SH2, and kinase. Mutations have been observed in each of the Btk subdomains in XLA. We have analyzed the Btk gene in six XLA patients from five unrelated families. MATERIALS AND METHODS: DNA was prepared from the patients peripheral blood. The Btk exons including the junctional sequences were analyzed by single-strand conformation polymorphism (SSCP) followed by direct nucleotide sequencing after PCR-amplification. For structural analysis, the missense mutations were introduced into three-dimensional models of the PH and kinase domains of Btk and the outcome was predicted based on the knowledge of the protein function. RESULTS: Five novel mutations and two novel polymorphisms, all of which resulted from single-base alterations, were identified. Three of the five mutations were in the PH domain and two were in the kinase domain of Btk. Three of these mutations were of the missense type, two of which altered the same codon in the PH domain; the third one was located in the kinase domain. The fourth mutation was a point deletion in the PH domain causing a frameshift followed by premature termination. The fifth mutation was a splice donor-site mutation within the kinase domain which could result in an exon skipping. In four of the five instances, mothers of the patients were shown to be obligate carriers. In one instance, a sibling sister was identified as a heterozygote establishing her as a carrier. CONCLUSIONS: Functional consequences of the mutations causing frameshifts and altered splicing can be inferred directly. Functional consequences of the missense mutations were interpreted by 3-dimensional structural modeling of Btk domains. It is proposed that the two PH domain mutations will interfere with membrane localization while the kinase domain mutation will interfere with the enzymatic function of Btk. This study provides further insight into the role of Btk in XLA.  相似文献   

3.
M Hyv?nen  M Saraste 《The EMBO journal》1997,16(12):3396-3404
Bruton''s tyrosine kinase (Btk) is an enzyme which is involved in maturation of B cells. It is a target for mutations causing X-linked agammaglobulinaemia (XLA) in man. We have determined the structure of the N-terminal part of Btk by X-ray crystallography at 1.6 A resolution. This part of the kinase contains a pleckstrin homology (PH) domain and a Btk motif. The structure of the PH domain is similar to those published previously: a seven-stranded bent beta-sheet with a C-terminal alpha-helix. Individual point mutations within the Btk PH domain which cause XLA can be classified as either structural or functional in the light of the three-dimensional structure and biochemical data. All functional mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids. It is likely that these mutations inactivate the Btk pathway in cell signalling by reducing its affinity for inositol phosphates, which causes a failure in translocation of the kinase to the cell membrane. A small number of signalling proteins contain a Btk motif that always follows a PH domain in the sequence. This small module has a novel fold which is held together by a zinc ion bound by three conserved cysteines and a histidine. The Btk motif packs against the second half of the beta-sheet of the PH domain, forming a close contact with it. Our structure opens up new ways to study the role of the PH domain and Btk motif in the cellular function of Btk and the molecular basis of its dysfunction in XLA patients.  相似文献   

4.
Vinculin plays a dynamic role in the assembly of the actin cytoskeleton. A strong interaction between its head and tail domains that regulates binding to other cytoskeletal components is disrupted by acidic phospholipids. Here, we present the crystal structure of the vinculin tail, residues 879-1066. Five amphipathic helices form an antiparallel bundle that resembles exchangeable apolipoproteins. A C-terminal arm wraps across the base of the bundle and emerges as a hydrophobic hairpin surrounded by a collar of basic residues, adjacent to the N terminus. We show that the C-terminal arm is required for binding to acidic phospholipids but not to actin, and that binding either ligand induces conformational changes that may represent the first step in activation.  相似文献   

5.
Muscle-specific kinase (MuSK) is a receptor tyrosine kinase expressed selectively in skeletal muscle. During neuromuscular synapse formation, agrin released from motor neurons stimulates MuSK autophosphorylation in the kinase activation loop and in the juxtamembrane region, leading to clustering of acetylcholine receptors. We have determined the crystal structure of the cytoplasmic domain of unphosphorylated MuSK at 2.05 A resolution. The structure reveals an autoinhibited kinase domain in which the activation loop obstructs ATP and substrate binding. Steady-state kinetic analysis demonstrates that autophosphorylation results in a 200-fold increase in k(cat) and a 10-fold decrease in the K(m) for ATP. These studies provide a molecular basis for understanding the regulation of MuSK catalytic activity and suggest that an additional in vivo component may contribute to regulation via the juxtamembrane region.  相似文献   

6.
7.
G proteins are critical cellular signal transducers for a variety of cell surface receptors. Both alpha and betagamma subunits of G proteins are able to transduce receptor signals. Several direct effect molecules for Gbetagamma subunits have been reported; yet the biochemical mechanism by which Gbetagamma executes its modulatory role is not well understood. We have shown that Gbetagamma could directly increase the kinase activity of Bruton's tyrosine kinase (Btk) whose defects are responsible for X chromosome-linked agammaglobulinemia in patients. The well characterized interaction of Gbetagamma with the PH (pleckstrin homology)/TH (Tec-homology) module of Btk was proposed to be the underlying activation mechanism. Here we show that Gbetagamma also interacts with the catalytic domain of Btk leading to increased kinase activity. Furthermore, we showed that the PH/TH module is required for Gbetagamma-induced membrane translocation of Btk. The membrane anchorage is also dependent on the interaction of Btk with phosphatidylinositol 3,4,5-trisphosphate, the product of phosphoinositide 3-kinase. These data support a dual role for Gbetagamma in the activation of Btk signaling function, namely membrane translocation and direct regulation of Btk catalytic activity.  相似文献   

8.
X-linked agammaglobulinemia (XLA) is caused by mutations in the Bruton's tyrosine kinase (Btk). The absence of functional Btk leads to failure of B-cell development that incapacitates antibody production in XLA patients leading to recurrent bacterial infections. Btk SH2 domain is essential for phospholipase C-gamma phosphorylation, and mutations in this domain were shown to cause XLA. Recently, the B-cell linker protein (BLNK) was found to interact with the SH2 domain of Btk, and this association is required for the activation of phospholipase C-gamma. However, the molecular basis for the interaction between the Btk SH2 domain and BLNK and the cause of XLA remain unclear. To understand the role of Btk in B-cell development, we have determined the stability and peptide binding affinity of the Btk SH2 domain. Our results indicate that both the structure and stability of Btk SH2 domain closely resemble with other SH2 domains, and it binds with phosphopeptides in the order pYEEI > pYDEP > pYMEM > pYLDL > pYIIP. We expressed the R288Q, R288W, L295P, R307G, R307T, Y334S, Y361C, L369F, and 1370M mutants of the Btk SH2 domain identified from XLA patients and measured their binding affinity with the phosphopeptides. Our studies revealed that mutation of R288 and R307 located in the phosphotyrosine binding site resulted in a more than 200-fold decrease in the peptide binding compared to L295, Y334, Y361, L369, and 1370 mutations in the pY + 3 hydrophobic binding pocket (approximately 3- to 17-folds). Furthermore, mutation of the Tyr residue at the betaD5 position reverses the binding order of Btk SH2 domain to pYIIP > pYLDL > pYDEP > pYMEM > pYEEI. This altered binding behavior of mutant Btk SH2 domain likely leads to XLA.  相似文献   

9.
Protein C inhibitor (PCI) is a member of the serpin family that has many biological functions. In blood it acts as a procoagulant, and, in the seminal vesicles, it is required for spermatogenesis. The activity of PCI is affected by heparin binding in a manner unique among the heparin binding serpins, and, in addition, PCI binds hydrophobic hormones with apparent specificity for retinoids. Here we present the 2.4 A crystallographic structure of reactive center loop (RCL) cleaved PCI. A striking feature of the structure is a two-turn N-terminal shortening of helix A, which creates a large hydrophobic pocket that docking studies indicate to be the retinoid binding site. On the basis of surface electrostatic properties, a novel mechanism for heparin activation is proposed.  相似文献   

10.
BACKGROUND: The diagnosis of X-linked agammaglobulinemia (XLA) is not always clearcut. Not all XLA conform to the classic phenotype and less than 50% of affected boys have a family history of immunodeficiency. Mutations in the gene for Bruton's tyrosine kinase (BTK) are responsible for the majority of agammaglobulinemia cases. However, a certain proportion of patients may have mutations involving other genes, although they show with an XLA phenotype. We performed BTK gene mutation analysis in 37 males with presumed XLA and analyzed the pattern of X-chromosome inactivation (XCI) in 31 mothers to evaluate the relevance of these approaches to diagnosis and genetic counseling. MATERIALS AND METHODS: Twenty affected males with a sporadic occurrence and 17 familial cases belonging to nine families were enrolled within the framework of the Italian Multicenter Clinical Study on XLA. We used non-isotopic RNase cleavage assay (NIRCA), followed by cDNA sequence determination to screen for BTK mutations and X-chromosome inactivation analysis for carrier detection. RESULTS: Using the cDNA-based approach, the identification of BTK gene abnormalities confirmed the clinical diagnosis of XLA in 31 of 37 affected infants. Missense was the most frequent mutational event and the kinase domain was mostly involved. In addition, nine novel mutations were identified. In sporadic cases, BTK gene abnormalities were identified in 9 out of 10 patients whose mothers had a nonrandom pattern of XCI and in 5 out of 6 patients whose mother had a random pattern of XCI. With the exception of one family, all patients with a familial occurrence and born to mothers with a nonrandom pattern of XCI had mutations of the BTK gene. CONCLUSIONS: Our findings indicate that in sporadic cases BTK gene sequencing is the only reliable tool for a definitive diagnosis of XLA and support XCI as the first diagnostic tool in the mothers of affected males in multiple generations. Furthermore, our molecular analysis confirms that 10-20% of BTK-unaltered patients have disorders caused by defects in other genes.  相似文献   

11.
Defects in Bruton's tyrosine kinase (Btk) are responsible for X chromosome-linked agammaglobulinemia in patients. Mutations in each of the structural domains of Btk have been detected in patients, yet a mechanistic explanation for most of these mutant phenotypes is lacking. To understand the possible role of the unique pleckstrin homology and Tec homology (PHTH) module of Btk, we have compared the enzymatic properties of full-length Btk and a Btk mutant lacking the PHTH module (BtkDeltaPHTH). Here we show that Btk and BtkDeltaPHTH have similar basal catalytic activity but very different abilities to recognize protein substrates. Furthermore, the catalytic domain of Btk is inactive, in contrast to the catalytic domain of the prototypical Src tyrosine kinase that retains full catalytic ability. These data suggest that the PHTH module plays an important role in protein substrate recognition, that Btk and Src likely have different interdomain organizations and regulations, and that alterations in substrate recognition might play a role in X chromosome-linked agammaglobulinemia.  相似文献   

12.
Urea carboxylase (UC) is conserved in many bacteria, algae, and fungi and catalyzes the conversion of urea to allophanate, an essential step in the utilization of urea as a nitrogen source in these organisms. UC belongs to the biotin-dependent carboxylase superfamily and shares the biotin carboxylase (BC) and biotin carboxyl carrier protein (BCCP) domains with these other enzymes, but its carboxyltransferase (CT) domain is distinct. Currently, there is no information on the molecular basis of catalysis by UC. We report here the crystal structure of the Kluyveromyces lactis UC and biochemical studies to assess the structural information. Structural and sequence analyses indicate the CT domain of UC belongs to a large family of proteins with diverse functions, including the Bacillus subtilis KipA-KipI complex, which has important functions in sporulation regulation. A structure of the KipA-KipI complex is not currently available, and our structure provides a framework to understand the function of this complex. Most interestingly, in the structure the CT domain interacts with the BCCP domain, with biotin and a urea molecule bound at its active site. This structural information and our follow-up biochemical experiments provided molecular insights into the UC carboxyltransfer reaction. Several structural elements important for the UC carboxyltransfer reaction are found in other biotin-dependent carboxylases and might be conserved within this family, and our data could shed light on the mechanism of catalysis of these enzymes.  相似文献   

13.
Collagenase from the gram-negative bacterium Grimontia hollisae strain 1706B (Ghcol) degrades collagen more efficiently even than clostridial collagenase, the most widely used industrial collagenase. However, the structural determinants facilitating this efficiency are unclear. Here, we report the crystal structures of ligand-free and Gly-Pro-hydroxyproline (Hyp)-complexed Ghcol at 2.2 and 2.4 Å resolution, respectively. These structures revealed that the activator and peptidase domains in Ghcol form a saddle-shaped structure with one zinc ion and four calcium ions. In addition, the activator domain comprises two homologous subdomains, whereas zinc-bound water was observed in the ligand-free Ghcol. In the ligand-complexed Ghcol, we found two Gly-Pro-Hyp molecules, each bind at the active site and at two surfaces on the duplicate subdomains of the activator domain facing the active site, and the nucleophilic water is replaced by the carboxyl oxygen of Hyp at the P1 position. Furthermore, all Gly-Pro-Hyp molecules bound to Ghcol have almost the same conformation as Pro-Pro-Gly motif in model collagen (Pro-Pro-Gly)10, suggesting these three sites contribute to the unwinding of the collagen triple helix. A comparison of activities revealed that Ghcol exhibits broader substrate specificity than clostridial collagenase at the P2 and P2′ positions, which may be attributed to the larger space available for substrate binding at the S2 and S2′ sites in Ghcol. Analysis of variants of three active-site Tyr residues revealed that mutation of Tyr564 affected catalysis, whereas mutation of Tyr476 or Tyr555 affected substrate recognition. These results provide insights into the substrate specificity and mechanism of G. hollisae collagenase.  相似文献   

14.
BACKGROUND: X-linked agammaglobulinemia (XLA) is a severe, life-threatening disease characterized by failure of B cell differentiation and antibody production and is associated with mutations in Bruton's tyrosine kinase (Btk). The proband in this study is a 51-year-old male presenting with chronic nasal congestion, recurrent sinusitis, sporadic pneumonia, and pronounced B cell deficiency. A family history suggestive of an X-linked immunodeficiency disease was noted. MATERIALS AND METHODS: cDNA was synthesized from mRNA prepared from peripheral blood mononuclear leukocytes. Btk cDNA amplified by polymerase chain reaction (PCR) was subjected to both manual and automated DNA sequencing. A DNA sequence corresponding to exons 6 and 7 of Btk was amplified from genomic DNA. Western blot analysis employed both polyclonal and monoclonal antibodies to Btk and reaction patterns were obtained both by chemiluminescence and an in vitro kinase assay. RESULTS: A mutation (Cys145-->Stop) was identified in Btk cDNA and was confirmed in amplified exon 6 of genomic DNA from both the proband and an affected nephew. Neither Btk nor a truncated peptide was detected in Western blot analyses of peripheral blood mononuclear cell lysates. CONCLUSIONS: The C145A mutation reported here is novel. This family study is extraordinary in that affected male members who did not undergo aggressive medical management either succumbed to complications in early life or survived into later life. The proband is the oldest de novo diagnosed patient with XLA reported to date.  相似文献   

15.
Bruton's tyrosine kinase (Btk) represents an important signaling element downstream of ITAM-containing receptors, e.g. FcepsilonR1 and BCR. Btk is part of the calcium signalosome and thus, critically involved in intracellular calcium mobilization. Loss of Btk or expression of mutant forms results in severe disease phenotypes, X-linked agammaglobulinemia (XLA) and Xid in humans and mice, respectively. Previously, roles for Btk in TLR-mediated signal transduction have been found in monocytes/macrophages. In the present study we show that Btk deficiency moderately enhances or has no influence on the LPS- or lipopeptide-induced secretion of IL-6 and TNF-alpha from murine bone marrow-derived mast cells (BMMCs). Furthermore, activation of p38 kinase, which is required for cytokine production, is comparable in WT and Btk-/- BMMCs. Moreover, stability of the adaptor protein Mal as well as LPS-induced H(2)O(2) production does not vary between WT and Btk-/- cells. Interestingly, PKC-beta deficiency, which results in a Xid-like phenotype as well, has also no negative effect on LPS-induced cytokine secretion, suggesting that proteins of the calcium signalosome are not involved in TLR-mediated BMMC activation. In conclusion, the study reveals that Btk is dispensable for TLR signaling and function in murine BMMCs.  相似文献   

16.
BACKGROUND: The insulin-like growth-factor-1 (IGF-1) receptor, which is widely expressed in cells that have undergone oncogenic transformation, is emerging as a novel target in cancer therapy. IGF-1-induced receptor activation results in autophosphorylation of cytoplasmic kinase domains and enhances their capability to phosphorylate downstream substrates. Structures of the homologous insulin receptor kinase (IRK) exist in an open, unphosphorylated form and a closed, trisphosphorylated form. RESULTS: We have determined the 2.1 A crystal structure of the IGF-1 receptor protein tyrosine kinase domain phosphorylated at two tyrosine residues within the activation loop (IGF-1RK2P) and bound to an ATP analog. The ligand is not in a conformation compatible with phosphoryl transfer, and the activation loop is partially disordered. Compared to the homologous insulin receptor kinase, IGF-1RK2P is trapped in a half-closed, previously unobserved conformation. Observed domain movements can be dissected into two orthogonal rotational components. CONCLUSIONS: Conformational changes upon kinase activation are triggered by the degree of phosphorylation and are crucially dependent on the conformation of the proximal end of the kinase activation loop. This IGF-1RK structure will provide a molecular basis for the design of selective antioncogenic therapeutic agents.  相似文献   

17.
18.
Src homology 2 (SH2) domains recognize phosphotyrosine (pY)-containing sequences and thereby mediate their association to ligands. Bruton's tyrosine kinase (Btk) is a cytoplasmic protein tyrosine kinase, in which mutations cause a hereditary immunodeficiency disease, X-linked agammaglobulinemia (XLA). Mutations have been found in all Btk domains, including SH2. We have analyzed the structural and functional effects of six disease-related amino acid substitutions in the SH2 domain: G302E, R307G, Y334S, L358F, Y361C, and H362Q. Also, we present a novel Btk SH2 missense mutation, H362R, leading to classical XLA. Based on circular dichroism analysis, the conformation of five of the XLA mutants studied differs from the native Btk SH2 domain, while mutant R307G is structurally identical. The binding of XLA mutation-containing SH2 domains to pY-Sepharose was reduced, varying between 1 and 13% of that for the native SH2 domain. The solubility of all the mutated proteins was remarkably reduced. SH2 domain mutations were divided into three categories: 1) Functional mutations, which affect residues presumably participating directly in pY binding (R307G); 2) structural mutations that, via conformational change, not only impair pY binding, but severely derange the structure of the SH2 domain and possibly interfere with the overall conformation of the Btk molecule (G302E, Y334S, L358F, and H362Q); and 3) structural-functional mutations, which contain features from both categories above (Y361C).  相似文献   

19.
20.
The human nuclear pregnane X receptor (PXR) responds to a wide variety of xenobiotic and endobiotic compounds, including pregnanes, progesterones, corticosterones, lithocholic acids, and 17beta-estradiol. In response to these ligands, the receptor controls the expression of genes central to the metabolism and excretion of potentially harmful chemicals from both exogenous and endogenous sources. Although the structural basis of PXR's interaction with small and large xenobiotics has been examined, the detailed nature of its binding to endobiotics, including steroid-like ligands, remains unclear. We report the crystal structure of the human PXR ligand-binding domain (LBD) in complex with 17beta-estradiol, a representative steroid ligand, at 2.65 A resolution. Estradiol is found to occupy only one region of PXR's expansive ligand-binding pocket, leaving a notable 1000 A3 of space unoccupied, and to bridge between the key polar residues Ser-247 and Arg-410 in the PXR LBD. Positioning the steroid scaffold in this way allows it to make several direct contacts to alphaAF of the receptor's AF-2 region. The PXR-estradiol complex was compared with that of other nuclear receptors, including the estrogen receptor, in complexes with analogous ligands. It was found that PXR's placement of the steroid is remarkably distinct relative to other members of the nuclear receptor superfamily. Using the PXR-estradiol complex as a guide, the binding of other steroid- and cholesterol-like molecules was then considered. The results provide detailed insights into the manner in which human PXR responds to a wide range of endobiotic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号