首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary New methodology for the preparation of L-isoserine and its incorporation into N- and C-terminal position of peptides is described. Furthermore, the new protective group strategy allows regioselective functional group manipulation in multifunctional amino acids like serine and isoserine.  相似文献   

2.
Hatanaka  Shin-Ichi  Furukawa  Jun  Aoki  Toshio  Akatsuka  Hirokazu  Nagasawa  Eiji 《Mycoscience》1994,35(4):391-394
Combining different chromatography systems, unusual nonprotein amino acids were isolated and unequivocally identified from a small amount (less than 100 g fresh weight) ofAmanita gymnopus fruit body. Without obtaining crystals of these amino acids, on the basis of1H-NMR determination, high resolution mass spectrometry, chlorine analysis and oxidation with L-amino acid oxidase, one of them proved to be a new chloroamino acid, (2S)-2-amino-5-chloro-4-hydroxy-5-hexenoic acid (G2). The other three were (2S)-2-amino-5-hexenoic acid (G1), (2S)-2-amino-4,5-hexadienoic acid (G3) and (2S)-2-amino-5-hexynoic acid (G4). Amino acid (G1) was also encountered for the first time in natural products. Amino acid (G3) has been reported from several kinds of fungi belonging toAmanita, subgenusLepidella. The occurrence of amino acid (G4) was already reported fromCortinarius claricolor.Part 23 in the series Biochemical studies of nitrogen compounds in fungi. Part 22, Hatanaka, S. I. et al. 1985. Trans. Mycol. Soc. Japan26: 61–68.  相似文献   

3.
The mechanism and specificity of amino-acid transport at the plasma membrane of Ricinus communis L. roots was investigated using membrane vesicles isolated by phase partitioning. The transport of glutamine, isoleucine, glutamic acid and aspartic acid was driven by both a pH gradient and a membrane potential (internally alkaline and negative), created artificially across the plasma membrane. This is consistent with transport via a proton symport. In contrast, the transport of the basic amino acids, lysine and arginine, was driven by a negative internal membrane potential but not by a pH gradient, suggesting that these amino acids may be taken up via a voltage-driven uniport. The energized uptake of all of the amino acids tested showed a saturable phase, consistent with carrier-mediated transport. In addition, the membrane-potential-driven transport of all the amino acids was greater at pH 5.5 than at pH 7.5, which suggests that there could be a direct pH effect on the carrier. Several amino-acid carriers could be resolved, based on competition studies: a carrier with a high affinity for a range of neutral amino acids (apart from asparagine) but with a low affinity for basic and acidic amino acids; a carrier which has a high affinity for a range of neutral amino acids except isoleucine and valine, but with a low affinity for basic and acidic amino acids; and a carrier which has a higher affinity for basic and some neutral amino acids but has a lower affinity for acidic amino acids. The existence of a separate carrier for acidic amino acids is discussed.Abbreviations PM plasma membrane - TPP+ tetraphenylphosphonium ion - pH pH gradient - membrane potential This work was supported by the Agricultural and Food Research Council and The Royal Society. We would like to thank Mrs. Sue Nelson for help with some of the membrane preparations.  相似文献   

4.
5.
Two diastereoisomers of 4-carboxy-4-hydroxy-2-aminoadipic acid have been isolated from leaves and inflorescences of Caylusea abyssinica. Green parts of the plant also contain appreciable amounts of the two diastereoisomers of 4-hydroxy-4-methylglutamic acid, 3-(3-carboxyphenyl)alanine, (3-carboxyphenyl)glycine, 3-(3-carboxy-4-hydroxyphenyl)alanine, (3-carboxy-4-hydroxyphenyl)glycine and in low concentration 2-aminoadipic acid, saccharopine [(2S, 2′S)-N6-(2-glutaryl)lysine] and some γ-glutamyl peptides. The acidic amino acids were separated from other amino acids on an Ecteola ion exchange column with M pyridine as eluant.  相似文献   

6.
The cotyledons of castor bean (Ricinus communis L.) act as absorption organs for amino acids, which are supplied to the medium. The analysis of the sieve-tube sap, which exudes from the cut hypocotyl, demonstrated the ability of the cotyledons to load particular amino acids into the phloem and to reject the loading of others. The sieve-tube sap of cotyledons, which were embedded in the endosperm, contained 150 mM amino acids, with 50 mM glutamine as the major amino acid, and 10–15 mM each of valine, isoleucine, lysine and arginine. Removal of the endosperm led to a drastic decline in the amino-acid content of sieve-tube sap down to 16 mM. Addition of single amino acid species to the medium increased the amino acid concentration in the sieve-tube sap in specific manner: glutamine caused the largest increase (up to 140 mM in exudate), glutamate and alanine smaller increases (up to 60 mM), and arginine the smallest. In addition, the amino acid composition of the sieve-tube sap changed, for instance, glutamine or alanine readily appeared in the sieve-tube sap upon incubation in glutamine or alanine, respectively, whereas glutamate was hardly discernible even in the case of incubation with glutamate; arginine was loaded into the sieve tubes only reluctantly. In general, glutamine and alanine accumulated four- to tenfold in the sieve tubes. The uptake of amino acids and of sucrose into the sieve tubes was interdependent: the loading of sucrose strongly reduced the amino acid concentration in the sieve-tube exudate and loading of amino acids decreased the sucrose concentration. Comparison of the concentrations of various amino acids on their way from the endosperm via the cotyledon-endosperm interface, through the cotyledons and into the sieve tubes showed that glutamine, valine, isoleucine and lysine are accumulated on this pathway, whereas glutamate and arginine are more concentrated in the cotyledons than in the sieve tubes. Obviously the phloem-loading system has a transport specificity different from that of the amino acid uptake system of the cotyledon in general and it strongly discriminates between amino acids within the cotyledons.  相似文献   

7.
Paenibacillus polymyxa GS01 secretes Cel44C-Man26A as a multifunctional enzyme with cellulase, xylanase, lichenase, and mannanase activities. Cel44C-Man26A consists of 1,352 amino acids in which present a catalytic domain (CD) of the glycosyl hydrolase family 44 (GH44), fibronectin domain type 3 (Fn3), catalytic domain of glycosyl hydrolase family 26 (GH26), and a cellulose-binding module type 3 (CBM3). A truncated Cel44C-Man26A protein, consisting of 549 amino acid residues, reacted as a multifunctional mature enzyme despite the absence of the 10 amino acids containing GH44, Fn3, GH26, and CBM3. However, the multifunctional activity was not found in the mature Cel44C-Man26A protein truncated to less than 548 amino acids. The truncated Cel44C-Man26A proteins showed the optimum pH for the lichenase activity was pH 7.0, pH 6.0 for the xylanase and mannanase, and pH 5.0 for the cellulase. The truncated Cel44C-Man26A proteins exhibited enzymatic activity 40–120% higher than the full-length Cel44C.  相似文献   

8.
An immunological survey of C3, C4 and C3-C4-intermediate Flaveria species showed that subunit III (PsaF) of the photosystem I reaction center (PSI-RC) is present in all these species. This was confirmed by the isolation of the gene encoding the PSI-RC subunit III (PsaF) from Flaveria trinervia, the first psaF gene to be isolated from a C4 plant. The deduced amino acid sequence showed a high degree of similarity to the corresponding protein of spinach which is a C3 species. A region of 17 hydrophobic amino acids in the C-terminal part of the F. trinervia protein was found to be especially conserved in all PsaF proteins studied so far (cyanobacteria and Chlamydomonas).Abbreviations PSI-RC Photosystem I reaction center - cTPs chloroplast-targeted-proteins - chl chlorophyll - SDS sodium dodecyl sulfate  相似文献   

9.
A locally isolated Gram negative bacterium, Cupriavidus sp. USMAA9-39 was able to produce various types of biodegradable polyesters through a two-step cultivation process. These are copolymer poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)], copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] and terpolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-3HV-co-4HB)]. These polymers were synthesized by this bacterium when grown with a combination of some carbon sources. The biosynthesis of P(3HB-co-4HB) was achieved by using carbon sources such as γ-butyrolactone or 1,4-butanediol or by a combination of oleic acid with either γ-butyrolactone or 1,4-butanediol. Meanwhile, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was produced using 1-pentanol or valeric acid or by a combination of oleic acid with either 1-pentanol or valeric acid. When γ-butyrolactone or 1,4-butanediol with either valeric acid or 1-pentanol were used as mixed carbon sources, P(3HB-co-3HV-co-4HB) terpolymer were produced. The presence of 3HB, 3HV or/and 4HB monomers were confirmed by gas chromatography and nuclear magnetic resonance (NMR) spectroscopy.  相似文献   

10.
The kinetic analysis of l-amino acid uptake by the green alga Chlorella revealed at least seven different uptake systems to be present in cells grown autotrophically with nitrate as nitrogen source. There is a ‘general system’ which transports most neutral and acidic amino acids, a system for short-chain neutral amino acids including proline, a system for basic amino acids including histidine, a special system for acidic amino acids, and specific systems for methionine, glutamine and threonine. The ‘general system’ is possibly the same as that which can be stimulated by incubation of cells in glucose plus ammonium (Sauer, N. (1984) Planta 161, 425–431). The incubation of Chlorella in glucose induces the increased synthesis of six amino acid uptake systems, namely the above-mentioned system for short-chain neutral amino acids, a threonine system, a methionine system, and a glutamine system. These results indicate that the uptake of l-amino acids by the green alga Chlorella is as complex as in other free-living organisms such as bacteria or yeast. The small number of amino acid uptake systems found in cells of higher plants, i.e. two or three, seems therefore to be a consequence of integration of the cells in a tissue supplying a relatively constant environment, and not a consequence of autotrophic growth on mineral carbon and mineral nitrogen.  相似文献   

11.
12.
DNA photolyase can repair UV-induced DNA damage in a light-dependent manner. A cDNA of (6-4)photolyase from Dunaliella salina (GenBank accession number: AY845324) was cloned, sequenced and its amino acid sequence was deduced. The derived amino acid sequence showed high homology with other (6-4)photolyases and a predicted 3D model was constructed by homology modeling. Revisions requested 20 May 2005 and 18 August 2005; Revisions received 2 August 2005 and 28 November 2005  相似文献   

13.
The complete amino acid sequence of the lectin from Bothrops jararacussu snake venom (BJcuL) is reported. The sequence was determined by Edman degradation and amino acid analysis of the S-carboxymethylated BJcuL derivative (RC-BJcuL) and from its peptides originated from enzymatic digestion. The sequence of amino acid residues showed that this lectin displays the invariant amino acid residues characterized in C-type lectins. Amino acids analysis revealed a high content of acidic amino acids and leucine. These findings suggest that BJcuL, like other snake venom lectins, possesses structural similarities to the carbohydrate recognition domain (CRD) of calcium-dependent animal lectins belonging to the C-type -galactoside binding lectin family.  相似文献   

14.
3-(3-Carboxyphenyl)alanine, (3-carboxyphenyl)glycine, 3-(3-carboxy-4-hydroxyphenyl)alanine and (3-carboxy-4-hydroxyphenyl)glycine occur in all parts of Reseda luteola. The concentrations of the two diastereoisomers of 2(S)-4-hydroxy-4-methylglutamic acid undergo seasonal variation, the highest concentrations occurring in the first part of the summer. Highest concentrations are found in the inflorescences. The two diastereoisomers of 2(S)-4-hydroxy-2-aminopimelic acid occur in appreciable amounts in all parts of the plant. They are easily transformed into two structurally different lactones, one of which is very unstable. The structures of these amino acids have been confirmed by synthesis. Green parts of R. luteola also contain substantial quantities of γ-glutamylglutamic acid and glutathione.  相似文献   

15.
In yeasts, several sensing systems localized to the plasma membrane which transduce information regarding the availability and quality of nitrogen and carbon sources and work in parallel with the intracellular nutrient-sensing systems, regulate the expression and activity of proteins involved in nutrient uptake and utilization. The aim of this work was to establish whether the cellular signals triggered by amino acids modify the expression of the UGA4 gene which encodes the δ-aminolevulinic (ALA) and γ-aminobutyric (GABA) acids permease. In the present paper, we demonstrate that extracellular amino acids regulate UGA4 expression and that this effect seems to be mediated by the amino acid sensor complex SPS (SSY1, PTR3, SSY5).  相似文献   

16.
17.
This paper describes the primary structure of two visual pigment opsins (DfRh1 and DfRh2) in the regionalized compound eye of a dragonfly,Sympetrum frequens. The amino acid sequences were deduced from the nucleotide sequences of cDNAs isolated from a cDNA library of the dragonfly retina. The two opsins both consist of 379 amino acids with 81.3% identity. Analysis of hydropathy indicated that the sequences have seven transmembrane domains like those of previously described opsins. Expression analysis using RT-PCR revealed that DfRh1 was present only in the dorsal region whereas DfRh2 was detected in both the dorsal and the ventral regions of the eye.  相似文献   

18.
Alcaligenes latus strains can accumulate poly-D(-)-3-hydroxybutyrate (PHB) up to about 85% of cell dry weight. The abilities to store poly-D(-)-3-hydroxyvalerate (PHV) of three strains ofA. latus were investigated. With Na-propionate as PHV precursor, strainA. latusDSM 1122 had better PHV accumulation ability than strainsA. latusDSM 1123 and 1124. StrainA. latus DSM 1123 could store PHV when Na-valerate but not Na-propionate served as the PHV precursor. PHB and PHV accumulation byA. latus DSM 1124 rapidly increased when propionic acid and acetic acid were together added to the fermentor. This increase was not obtained in the culture shaker flask and fermentor growing the same strain when Na-propionate alone served as a PHV precursor.  相似文献   

19.
We have isolated 4 cDNA clones (GRT1-4) encoding glutathione reductase (GR) from a tobacco (Nicotiana tabacum L.) leaf cDNA library. The cDNAs were almost identical: GRT1, GRT3 and GRT4 represented the same gene, differing only in that GRT4 contained an intron within the C-terminal part of the coding sequence. Failure to splice out this intron resulted in a substitution of the final 13 amino acids of the deduced amino acid sequence. A second gene was represented by GRT2. Southern blots indicated that there were two related GR genes in tobacco. The presence of multiple isoforms of GR in tobacco may be explained in part by the expression of a small gene family. In addition, alternative isoforms may result from translation of different mRNAs derived from the same gene by intron skipping during the splicing of nascent GR mRNAs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号