首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparative genome analysis may provide novel insights into gene evolution and function. To investigate the von Hippel-Lindau (VHL) disease tumor suppressor gene, we sequenced the VHL gene in seven primate species. Comparative analysis was performed for human, primate, and rodent VHL genes and for a putative Caenorhabditis elegans VHL homologue identified by database analysis. The VHL gene has two translation initiation sites (at codons 1 and 54); however, the relative importance of the full-length translation product (pVHL30) and that translated from the second internal translation initiation site (pVHL19) is unclear. The N-terminal sequence of pVHL30 contains eight copies of a GXEEX acidic repeat motif in human and higher primates, but only three copies were present in the marmoset, and only one copy was present in rodent VHL genes. Evolutionary analysis suggested that the N-terminal repetitive sequence in pVHL30 was of less functional importance than those regions present in both pVHL30 and pVHL19. The VHL gene product is reported to form complexes with various proteins including elongin B, elongin C, VBP-1, fibronectin, Spl, CUL2, and HIF-1. Although most of the regions in pVHL that had been implicated in binding specific proteins demonstrated evolutionary conservation, the carboxy-terminal putative VBP-1 binding site was less well conserved, suggesting that VBP-1 binding may have less functional significance. Although an amino acid substitution (K171T) close to the pVHL elongin binding region was found in baboon, analysis of the structure of human pVHL suggested that this substitution would not interfere with pVHL/elongin C interaction. In general, there was a good correlation between the pVHL domains that demonstrated most evolutionary conservation and those that were most frequently mutated in tumors. Analysis of human/C. elegans conservation and human germline and somatic mutation patterns identified a highly conserved mutation cluster region between codons 74 and 90. However, this region is likely to be important for the structural integrity of pVHL rather than representing an additional protein binding domain.  相似文献   

2.
Von Hippel-Lindau (VHL) is an important tumor suppressor, and its inactivation is a hallmark of inherited VHL disease and most sporadic clear cell renal cell carcinoma (ccRCC). VHL protein (pVHL) with missense point mutations are unstable and degraded by the proteasome because of the disruption of elongin binding. Deubiquitylase ovarian tumor domain-containing 6B (OTUD6B) had been documented to couple pVHL and elongin B to form stable VHL - elonginB - elonginC complex, which protects pVHL from degradation. However, whether OTUD6B governs the stability of pVHL wild type and the missense mutants in ccRCC remains largely elusive. Here, we reported that low OTUD6B level predicted poorer survival in ccRCC patients with VHL missense mutation, but not frameshift deletion and nonsense mutation. OTUD6B is able to interact with wild type pVHL and tumor-derived pVHL missense mutants, except for pVHL I151T, and decrease their ubiquitylation and proteasomal degradation in ccRCC cells. Functionally, we revealed that OTUD6B depletion enhanced cell migration and HIF-2α level in ccRCC cells in a pVHL dependent manner. In addition, OTUD6B depletion reduced the inhibitory effects of ectopic pVHL missense mutants on cell migration and HIF-2α level, except for pVHL I151T. Thus, we speculated that I151 residue might be one of key sites of pVHL binding to OTUD6B. These results suggested that OTUD6B is an important regulator for the stability of pVHL missense mutants, which provides a potential therapeutic strategy for ccRCC with VHL mutations.Subject terms: Ubiquitylation, Renal cell carcinoma  相似文献   

3.
4.
Summary Cullins are a recently identified protein family whose founder member, CUL-1, controls cell proliferation inCaenorhabditis elegans and which is conserved from yeasts to humans. Cullins have been found to be subunits of three different protein complexes: the Skpl-cullin-F-box complex (SCF), the anaphase-promoting complex (APC), and the CUL-2 elongin B/C-pVHL complex (CBCVHL). The SCF and the APC control progression through the cell cycle by mediating ubiquitin-dependent proteolysis of regulatory proteins. The CBCVHL complex has been identified through characterization of one of its subunits, the von Hippel-Lindau tumor suppressor protein (pVHL). The function of CBCVHL is unknown, but recent observations raise the possibility that also this complex is a component of the ubiquitin system.  相似文献   

5.
The tumor suppressor von Hippel-Lindau (VHL) gene product forms a complex with elongin B and elongin C, and acts as a recognition subunit of a ubiquitin E3 ligase. Interactions between components in the complex were investigated in living cells by fluorescence resonance energy transfer (FRET)-fluorescence lifetime imaging microscopy (FLIM). Elongin B-cerulean or cerulean-elongin B was coexpressed with elongin C-citrine or citrine-elongin C in CHO-K1 cells. FRET signals were examined by measuring a change in the fluorescence lifetime of donors and by monitoring a corresponding fluorescence rise of acceptors. Clear FRET signals between elongin B and elongin C were observed in all combinations, except for the combination of elongin B-cerulean and citrine-elongin C. Although similar experiments to examine interaction between pVHL30 and elongin C linked to cerulean or citrine were performed, FRET signals were rarely observed among all the combinations. However, the signal was greatly increased by coexpression of elongin B. These results, together with results of coimmunoprecipitation experiment using pVHL, elongin C and elongin B, suggest that a conformational change of elongin C and/or pVHL was induced by binding of elongin B. The conformational change of elongin C was investigated by measuring changes in the intramolecular FRET signal of elongin C linked to cerulean and citrine at its N- and C-terminus, respectively. A strong FRET signal was observed in the absence of elongin B, and this signal was modestly increased by coexpression of elongin B, demonstrating that a conformation change of elongin C was induced by the binding of elongin B.  相似文献   

6.
Loss of von Hippel-Lindau (VHL) tumor suppressor gene function occurs in familial and most sporadic renal cell carcinoma (RCC), resulting in the aberrant expression of genes that control cell proliferation, invasion and angiogenesis. The molecular mechanisms by which VHL loss leads to tumorigenesis are not yet fully defined. The VHL gene product, pVHL, is part of an E3 ubiquitin ligase complex that targets hypoxia inducible factors for polyubiquitination and proteosomal degradation, implicating hypoxia response genes in RCC oncogenesis. VHL loss also allows robust RCC cell invasiveness and morphogenesis in response to hepatocyte growth factor (HGF), an important regulator of kidney development and renal homeostasis. Recent elucidation of the mechanism by which pVHL represses developmental HGF responses in adult kidney has identified another oncogenically relevant E3 ligase target: β-catenin. This discovery also further unifies recent insights into the molecular pathogenesis of polycystic kidney disease, where the identification of disease genes has revealed the integration of signaling pathways associated with primary cilia function and the regulation of cell growth and differentiation.  相似文献   

7.
We examined the biogenesis of the von Hippel-Lindau (VHL) tumor suppressor protein (pVHL) in vitro and in vivo. pVHL formed a complex with the cytosolic chaperonin containing TCP-1 (CCT or TRiC) en route to assembly with elongin B/C and the subsequent formation of the VCB-Cul2 ubiquitin ligase. Blocking the interaction of pVHL with elongin B/C resulted in accumulation of pVHL within the CCT complex. pVHL present in purified VHL-CCT complexes, when added to rabbit reticulocyte lysate, proceeded to form VCB and VCB-Cul2. Thus, CCT likely functions, at least in part, by retaining VHL chains pending the availability of elongin B/C for final folding and/or assembly. Tumor-associated mutations within exon II of the VHL syndrome had diverse effects upon the stability and/or function of pVHL-containing complexes. First, a pVHL mutant lacking the entire region encoded by exon II did not bind to CCT and yet could still assemble into complexes with elongin B/C and elongin B/C-Cul2. Second, a number of tumor-derived missense mutations in exon II did not decrease CCT binding, and most had no detectable effect upon VCB-Cul2 assembly. Many exon II mutants, however, were found to be defective in the binding to and subsequent ubiquitination of hypoxia-inducible factor 1alpha (HIF-1alpha), a substrate of the VCB-Cul2 ubiquitin ligase. We conclude that the selection pressure to mutate VHL exon II during tumorigenesis does not relate to loss of CCT binding but may reflect quantitative or qualitative defects in HIF binding and/or in pVHL-dependent ubiquitin ligase activity.  相似文献   

8.
von Hippel-Lindau (VHL) disease is a hereditary cancer syndrome caused by germline mutations of the VHL tumour suppressor gene. The VHL gene product, pVHL, forms multiprotein complexes that contain elongin B, elongin C and Cul-2, and negatively regulates hypoxia-inducible mRNAs. pVHL is suspected to play a role in ubiquitination given the similarity of elongin C and Cul-2 with Skp1 and Cdc53, respectively. pVHL can also interact with fibronectin and is required for the assembly of a fibronectin matrix. Finally, pVHL, at least indirectly, plays a role in the ability of cells to exit the cell cycle. Thus, pVHL is a tumour suppressor protein that regulates angiogenesis, extracellular matrix formation and the cell cycle.  相似文献   

9.
Background

Clear cell type renal cell carcinoma (ccRCC) is the most common renal cell carcinoma (RCC). In this study, we examined the expressions of VHL and miR-223 in ccRCC patients? tissues to investigate the possible role in the development of ccRCC.

Methods and results

This study collected five expression profiles (GSE36139, GSE3, GSE73731, GSE40435, and GSE26032) from Gene Omnibus Data. Expressions of VHL and miR-223 in paraffinized tumor and normal tissues of 100 Turkish patients' ccRCC tissues were determined by bioinformatic data mining and real-time quantitative polymerase chain reaction (qRT-PCR). The VHL gene was subjected to mutational analysis by DNA sequencing, and pVHL was analyzed using western blotting. Our study's t-test and Pearson correlation analysis showed that VHL gene expression in tumoral tissues with a???0.39-fold decrease was not significantly lower than normal tissues (p?=?0.441), and a 0.97-fold increase miR-223 (p?=?0.045) was determined by real-time PCR. Also, as a result of DNA sequence analysis performed in the VHL gene, it was found that 26% of the patients have mutations. The mutations for (VHL):c.60C>A (p.Val20=) and (VHL):c.467delA (p.Tyr156Leu) was detected for the first time in Turkish patients.

Conclusions

The present study demonstrated that the differences in the expression levels of miR-223 have the potential to be biomarkers to determine the poor prognosis in ccRCC.

  相似文献   

10.
Renal cell carcinomas (RCCs) are frequently occurring genitourinary malignancies in the aged population. A morphological characteristic of RCCs is an irregular nuclear shape, which is used to index cancer grades. Other features of RCCs include the genetic inactivation of the von Hippel-Lindau gene, VHL, and p53 genetic-independent inactivation. An aberrant nuclear shape or p53 suppression has not yet been demonstrated. We examined the effect of progerin (an altered splicing product of the LMNA gene linked to Hutchinson Gilford progeria syndrome; HGPS) on the nuclear deformation of RCCs in comparison to that of HGPS cells. In this study, we showed that progerin was suppressed by pVHL and was responsible for nuclear irregularities as well as p53 inactivation. Thus, progerin suppression can ameliorate nuclear abnormalities and reactivate p53 in response to genotoxic addition. Furthermore, we found that progerin was a target of pVHL E3 ligase and suppressed p53 activity by p14/ARF inhibition. Our findings indicate that the elevated expression of progerin in RCCs results from the loss of pVHL and leads to p53 inactivation through p14/ARF suppression. Interestingly, we showed that progerin was expressed in human leukemia and primary cell lines, raising the possibility that the expression of this LMNA variant may be a common event in age-related cancer progression.  相似文献   

11.
12.
pVHL, the product of von Hippel-Lindau (VHL) tumor suppressor gene, functions as the substrate recognition component of an E3-ubiquitin ligase complex that targets hypoxia inducible factor α (HIF-α) for ubiquitination and degradation. Besides HIF-α, pVHL also interacts with other proteins and has multiple functions. Here, we report that pVHL inhibits ribosome biogenesis and protein synthesis. We find that pVHL associates with the 40S ribosomal protein S3 (RPS3) but does not target it for destruction. Rather, the pVHL-RPS3 association interferes with the interaction between RPS3 and RPS2. Expression of pVHL also leads to nuclear retention of pre-40S ribosomal subunits, diminishing polysomes and 18S rRNA levels. We also demonstrate that pVHL suppresses both cap-dependent and cap-independent protein synthesis. Our findings unravel a novel function of pVHL and provide insight into the regulation of ribosome biogenesis by the tumor suppressor pVHL.  相似文献   

13.
14.
Eukaryotic initiation factor 2A (eIF2A) is a 65-kDa protein that was first identified in the early 1970s as a factor capable of stimulating initiator methionyl-tRNAi (Met-tRNAMeti) binding to 40S ribosomal subunits in vitro. However, in contrast to the eIF2, which stimulates Met-tRNAMeti binding to 40S ribosomal subunits in a GTP-dependent manner, eIF2A didn't reveal any GTP-dependence, but instead was found to direct binding of the Met-tRNAMeti to 40S ribosomal subunits in a codon-dependent manner. eIF2A appears to be highly conserved across eukaryotic species, suggesting conservation of function in evolution. The yeast Saccharomyces cerevisae eIF2A null mutant revealed no apparent phenotype, however, it was found that in yeast eIF2A functions as a suppressor of internal ribosome entry site (IRES)-mediated translation. It was thus suggested that eIF2A my act by impinging on the expression of specific mRNAs. Subsequent studies in mammalian cell systems implicated eIF2A in non-canonical (non-AUG-dependent) translation initiation events involving near cognate UUG and CUG codons. Yet, the role of eIF2A in cellular functions remains largely enigmatic. As a first step toward characterization of the eIF2A function in mammalian systems in vivo, we have obtained homozygous eIF2A-total knockout (KO) mice, in which a gene trap cassette was inserted between eIF2A exons 1 and 2 disrupting expression of all exons downstream of the insertion. The KO mice strain is viable and to date displays no apparent phenotype. We believe that the eIF2A KO mice strain will serve as a valuable tool for researchers studying non-canonical initiation of translation in vivo.  相似文献   

15.

Background

von Hippel-Lindau disease is characterized by a spectrum of hypervascular tumors, including renal cell carcinoma, hemangioblastoma, and pheochromocytoma, which occur with VHL genotype-specific differences in penetrance. VHL loss causes a failure to regulate the hypoxia inducible factors (HIF-1α and HIF-2α), resulting in accumulation of both factors to high levels. Although HIF dysregulation is critical to VHL disease-associated renal tumorigenesis, increasing evidence points toward gradations of HIF dysregulation contributing to the degree of predisposition to renal cell carcinoma and other manifestations of the disease.

Methodology/Principal Findings

This investigation examined the ability of disease-specific VHL missense mutations to support the assembly of the VBC complex and to promote the ubiquitylation of HIF. Our interaction analysis supported previous observations that VHL Type 2B mutations disrupt the interaction between pVHL and Elongin C but maintain partial regulation of HIF. We additionally demonstrated that Type 2B mutant pVHL forms a remnant VBC complex containing the active members ROC1 and Cullin-2 which retains the ability to ubiquitylate HIF-1α.

Conclusions

Our results suggest that subtypes of VHL mutations support an intermediate level of HIF regulation via a remnant VBC complex. These findings provide a mechanism for the graded HIF dysregulation and genetic predisposition for cancer development in VHL disease.  相似文献   

16.
The von Hippel-Lindau (VHL) cancer syndrome is associated with mutations in the VHL gene. The pVHL protein is involved in response to changes in oxygen availability as part of an E3-ligase that targets the Hypoxia-Inducible Factor for degradation. pVHL has a molten globule configuration with marginal thermodynamic stability. The cancer-associated mutations further destabilize it. The Drosophila homolog, dVHL, has relatively low sequence similarity to pVHL, and is also involved in regulating HIF1-α. Using in silico, in vitro and in vivo approaches we demonstrate high similarity between the structure and function of dVHL and pVHL. These proteins have a similar fold, secondary and tertiary structures, as well as thermodynamic stability. Key functional residues in dVHL are evolutionary conserved. This structural homology underlies functional similarity of both proteins, evident by their ability to bind their reciprocal partner proteins, and by the observation that transgenic pVHL can fully maintain normal dVHL-HIF1-α downstream pathways in flies. This novel transgenic Drosophila model is thus useful for studying the VHL syndrome, and for testing drug candidates to treat it.  相似文献   

17.
Von Hippel-Lindau (VHL) tumor suppressor gene mutations predispose carriers to kidney cancer. The protein pVHL has been shown to interact with microtubules (MTs), which is critical to cilia maintenance and mitotic spindle orientation. However, the function for pVHL in the regulation of MT dynamics is unknown. We tracked MT growth via the plus end marker EB3 (end-binding protein 3)-GFP and inferred additional parameters of MT dynamics indirectly by spatiotemporal grouping of growth tracks from live cell imaging. Our data establish pVHL as a near-optimal MT-stabilizing protein: it attenuates tubulin turnover, both during MT growth and shrinkage, inhibits catastrophe, and enhances rescue frequencies. These functions are mediated, in part, by inhibition of tubulin guanosine triphosphatase activity in vitro and at MT plus ends and along the MT lattice in vivo. Mutants connected to the VHL cancer syndrome are differentially compromised in these activities. Thus, single cell–level analysis of pVHL MT regulatory function allows new predictions for genotype to phenotype associations that deviate from the coarser clinically defined mutant classifications.  相似文献   

18.
 HLA-G is a nonclassical major histocompatibility complex (MHC) class I molecule that is expressed only in the human placenta, suggesting that it plays an important role at the fetal-maternal interface. In rhesus monkeys, which have similar placentation to humans, the HLA-G orthologue is a pseudogene. However, rhesus monkeys express a novel placental MHC class I molecule, Mamu-AG, which has HLA-G-like characteristics. Phylogenetic analysis of AG alleles in two Old World primate species, the baboon and the rhesus macaque, revealed limited diversity characteristic of a nonclassical MHC class I locus. Gene trees constructed using classical and nonclassical primate MHC class I alleles demonstrated that the AG locus was most closely related to the classical A locus. Interestingly, gene tree analyses suggested that the AG alleles were most closely related to a subset of A alleles which are the products of an ancestral interlocus recombination event between the A and B loci. Calculation of the rates of synonymous and nonsynonymous substitution at the AG locus revealed that positive selection was not acting on the codons encoding the peptide binding region. In exon 4, however, the rate of nonsynonymous substitution was significantly lower than the rate of synonymous substitution, suggesting that negative selection was acting on these codons. Received: 22 April 1998 / Revised: 15 July 1998  相似文献   

19.
20.
Ashbya gossypii carries only a single gene (TEF) coding for the abundant translation elongation factor 1. Cloning and sequencing of this gene and deletion analysis of the promoter region revealed an extremely high degree of similarity with the well studied TEF genes of the yeast Saccharomyces cerevisiae including promoter upstream activation sequence (UAS) elements. The open reading frames in both species are 458 codons long and show 88.6% identity at the DNA level and 93.7% identity at the protein level. A short DNA segment in the promoter, between nucleotides -268 and -213 upstream of the ATG start codon, is essential for high-level expression of the A. gossypii TEF gene. It carries two sequences, GCCCATACAT and ATCCATACAT, with high homology to the UASrpg sequence of S. cerevisiae, which is an essential promoter element in genes coding for highly expressed components of the translational apparatus. UASrpg sequences are binding sites for the S. cerevisiae protein TUF, also called RAP1 or GRF1. In gel retardation with A. gossypii protein extracts we demonstrated specific protein binding to the short TEF promoter segment carrying the UASrpg homologous sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号