首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth rate of flagellar hooks in Salmonella typhimurium was analyzed by computer-aided simulation of the length distributions of mutant hooks of uncontrolled length (polyhooks). The wild-type hook has a relatively well-controlled length, with an average of 55 nm and a standard deviation of 6 nm. Mutations in the fliK gene give rise to polyhooks. A histogram of the lengths of polyhooks from a fliK mutant shows a peak at 55 nm with a long monotonic tail extending out to 1 microm. To analyze the growth rate, we employed the population balance method. Regression analysis showed that the histogram could fit a combination of two theoretical curves. In the first phase of growth, the hook starts with a very fast growth rate (40 nm/min), and then the rate exponentially slows until the length reaches 55 nm. In the second phase of growth, where the hook length is over 55 nm, the hook grows at a constant rate of 8 nm/min. Second mutations in either the fliK or flhB genes, as found in pseudorevertants from fliK mutants, give rise to polyhook filaments (phf). The ratio between the numbers of hooks with and without filament was 6:4. The calculated probability of filament attachment to polyhooks was low so that the proportion of hooks that start filament growth was only 2% per minute. The lengths of polyhooks with and without filaments were measured. A histogram of hook length in phf's was the same as that for polyhooks in single-site fliK mutants, against the expectation that the distribution would shift to a shorter average. The role of FliK in hook length control is discussed.  相似文献   

2.
The length of the flagellar hook is regulated; it is 55 +/- 6 nm long in Salmonella. Five genes involved in hook-length regulation are fliK, flhB, fliG, fliM and fliN. The last four genes encode structural components of the protein export apparatus in the flagellar base, whereas FliK is soluble and secreted during flagellar assembly. The role of FliK, however, remains ambiguous. We constructed two kinds of FliK variants: N-terminally truncated FliK protein and FliK N-terminally fused with cyan fluorescent protein (CFP-FliK). Both N-terminally truncated FliK missing the first 99 amino acids (aa) and CFP-FliK fusion variants partially complemented a fliK null (polyhook) mutant to produce cells with filaments, allowing cells to swim; the hooks, however, were not normal but were polyhooks. When the N-terminally defective FliK variants were expressed at high levels, the average polyhook length was shortened coming close to the length of the wild-type hook, independently of the sizes of the FliK variants. These FliK variants were not secreted. CFP-FliK fusion proteins were observed to homogeneously distribute in the cytoplasm. We conclude that FliK does not need to be exported to control hook length and is unlikely to be a ruler; instead, we conclude that FliK controls hook length by the timely switching of secretion modes of the flagellar type III secretion system by the FliK C-terminal domain, and that the N-terminal region is dispensable for hook length control.  相似文献   

3.
The flagellar hook of Salmonella is a filamentous polymer made up of subunits of the protein FlgE. Hook assembly is terminated when the length reaches about 55 nm. After our recent study of the effect of cellular levels of the hook length control protein FliK, we have now analyzed the effect of cellular levels of FlgE itself. When FlgE was overproduced in a wild-type strain, a fliC (flagellin) mutant, or a fliD (hook-associated protein 2 [HAP2], filament capping protein) mutant, the hooks remained at the wild-type length. In a fliK (hook length control protein) mutant, which produces long hooks (polyhooks), the overproduction of FlgE resulted in extraordinarily long hooks (superpolyhooks). In a flgK (HAP1, first hook-filament junction protein) mutant or a flgL (HAP3, second hook-filament junction protein) mutant, the overproduction of FlgE also resulted in longer than normal hooks. Thus, at elevated hook protein levels not only FliK but also FlgK and FlgL are necessary for the proper termination of hook elongation. When FlgE was severely underproduced, basal bodies without hooks were often observed. However, those hooks that were seen were of wild-type length, demonstrating that FlgE underproduction decreases the probability of the initiation of hook assembly but not the extent of hook elongation.  相似文献   

4.
A flagellum of Salmonella typhimurium and Escherichia coli consists of three structural parts, a basal body, a hook, and a filament. Because the fliK mutants produce elongated hooks, called polyhooks, lacking filament portions, the fliK gene product has been believed to be involved in both the determination of hook length and the initiation of the filament assembly. In the present study, we isolated two mutants from S. typhimurium which can form flagella even in the absence of the fliK gene product. Flagellar structures were fractionated from these suppressor mutants and inspected by electron microscopy. The suppressor mutants produced polyhook-filament complexes in the fliK mutant background, while they formed flagellar structures apparently indistinguishable from those of the wild-type strain in the fliK+ background. Genetic and sequence analyses of the suppressor mutations revealed that they are located near the 3'-end of the flhB gene, which has been believed to be involved in the early process of the basal body assembly. On the basis of these results, we discuss the mechanism of suppression of the fliK defects by the flhB mutations and propose a hypothesis on the export switching machinery of the flagellar proteins.  相似文献   

5.
The mechanism of length control of the flagellar hook is under debate between two theories. One claims that the FliK directly measures the hook length as a molecular ruler, while the other claims that the cytoplasmic substructure measures the amount of hook subunits to determine the hook length. Both agree that the FliK C-terminal domain catalyses the substrate-specificity switch to terminate hook elongation. In this study, we systematically created fliK mutants with deletions and insertions at various sites within the FliK N-terminal domain and analysed their effects on the final hook length. Insertions of peptide fragments from the Yersinia YscP into FliK gave rise to hooks with defined lengths, which was proportional to the molecular size of the FliK-YscP chimeras. Among fliK deletion mutants, only those with small truncations in three specific sites of FliK produced hooks of a defined, shortened length. For the majority of deletion mutants, FliK was secreted, but hook length was not controlled. On the other hand, for some deletion mutants FliK was not secreted, but the hook length was controlled, indicating that FliK secretion is not necessary for hook-length control. We conclude that FliK regulates hook length as an internal molecular ruler.  相似文献   

6.
Mutations in the fliK gene of Salmonella typhimurium commonly cause failure to terminate hook assembly and initiate filament assembly (polyhook phenotype). Polyhook mutants give rise to pseudorevertants which are still defective in hook termination but have recovered the ability to assemble filament (polyhook-filament phenotype). The polyhook mutations have been found to be either frameshift or nonsense, resulting in truncation of the C terminus of FliK. Intragenic suppressors of frameshift mutations were found to be ones that restored the original frame (and therefore the C-terminal sequence), but in most cases with substantial loss of natural sequence and sometimes the introduction of artificial sequence; in no cases did intragenic suppression occur when significant disruption remained within the C-terminal region. By use of a novel PCR protocol, in-frame deletions affecting the N-terminal and central regions of FliK were constructed and the resulting phenotypes were examined. Small deletions resulted in almost normal hook length control and almost wild-type swarming. Larger deletions resulted in loss of control of hook length and poor swarming. The largest deletions severely affected filament assembly as well as hook length control. Extragenic suppressors map to an unlinked gene, flhB, which encodes an integral membrane protein (T. Hirano, S. Yamaguchi, K. Oosawa, and S.-I. Aizawa, J. Bacteriol. 176:5439-5449, 1994; K. Kutsukake, T. Minamino, and T. Yokoseki, J. Bacteriol. 176:7625-7629, 1994). They were either point mutations in the C-terminal cytoplasmic region of FlhB or frameshift or nonsense mutations close to the C terminus. The processes of hook and filament assembly and the roles of FliK and FlhB in these processes are discussed in light of these and other available data. We suggest that FliK measures hook length and, at the appropriate point, sends a signal to FlhB to switch the substrate specificity of export from hook protein to late proteins such as flagellin.  相似文献   

7.
The flagella of the soil bacterium Sinorhizobium meliloti differ from the enterobacterial paradigm in the complex filament structure and modulation of the flagellar rotary speed. The mode of motility control in S. meliloti has a molecular corollary in two novel periplasmic motility proteins, MotC and MotE, that are present in addition to the ubiquitous MotA/MotB energizing proton channel. A fifth motility gene is located in the mot operon downstream of the motB and motC genes. Its gene product was originally designated MotD, a cytoplasmic motility protein having an unknown function. We report here reassignment of MotD as FliK, the regulator of flagellar hook length. The FliK gene is one of the few flagellar genes not annotated in the contiguous flagellar regulon of S. meliloti. Characteristic for its class, the 475-residue FliK protein contains a conserved, compactly folded Flg hook domain in its carboxy-terminal region. Deletion of fliK leads to formation of prolonged flagellar hooks (polyhooks) with missing filament structures. Extragenic suppressor mutations all mapped in the cytoplasmic region of the transmembrane export protein FlhB and restored assembly of a flagellar filament, and thus motility, in the presence of polyhooks. The structural properties of FliK are consistent with its function as a substrate specificity switch of the flagellar export apparatus for switching from rod/hook-type substrates to filament-type substrates.  相似文献   

8.
Salmonella flagellar hook length is controlled at the level of export substrate specificity of the FlhB component of the type III flagellar export apparatus. FliK is believed to be the hook length sensor and interacts with FlhB to change its export specificity upon hook completion. To find properties of FliK expected of such a molecular ruler, we assayed binding of FliK to the hook and found that the N-terminal domain of FliK (FliK(N)) bound to the hook-capping protein FlgD with high affinity and to the hook protein FlgE with low affinity. To investigate a possible role of FlgE in hook length control, flgE mutants with partially impaired motility were isolated and analyzed. Eight flgE mutants obtained all formed flagellar filaments. The mutants produced significantly shorter hooks while the hook-type substrates such as FlgE, FliK and FlgD were secreted in large amounts, suggesting defective hook assembly with the mutant FlgE proteins. Upon overexpression, mutant FlgEs produced hooks of normal length and wild-type FlgE produced longer hooks. These results suggest that hook length is dependent on the hook polymerization rate and that the start of hook polymerization initiates a "time countdown" for the specificity switch to occur or for significant slow down of rod/hook-type export after hook length reaches around 55 nm for later infrequent FliK(C)-FlhB(C) interaction. We propose that FliK(N) acts as a flexible tape measure, but that hook length is also dependent on the hook elongation rate and a switch timing mechanism.  相似文献   

9.
In wild-type Salmonella, the length of the flagellar hook, a structure consisting of subunits of the hook protein FlgE, is fairly tightly controlled at approximately 55 nm. Because fliK mutants produce abnormally elongated hook structures that lack the filament structure, FliK appears to be involved in both the termination of hook elongation and the initiation of filament formation. FliK, a soluble protein, is believed to function together with a membrane protein, FlhB, of the export apparatus to mediate the switching of export substrate specificity (from hook protein to flagellin) upon completion of hook assembly. We have examined the location of FliK during flagellar morphogenesis. FliK was found in the culture supernatants from the wild-type strain and from flgD (hook capping protein), flgE (hook protein) and flgK (hook-filament junction protein) mutants, but not in that from a flgB (rod protein) mutant. The amount of FliK in the culture supernatant from the flgE mutant was much higher than in that from the flgK mutant, indicating that FliK is most efficiently exported prior to the completion of hook assembly. Export was impaired by deletions within the N-terminal region of FliK, but not by C-terminal truncations. A decrease in the level of exported FliK resulted in elongated hook structures, sometimes with filaments attached. Our results suggest that the export of FliK during hook assembly is important for hook-length control and the switching of export substrate specificity.  相似文献   

10.
FliK–FlhB interaction switches export specificity of the bacterial flagellar protein export apparatus to stop hook protein export at an appropriate timing for hook length control. The hook structure is required for the productive FliK–FlhB interaction to flip the switch but it remains unknown how it works. Here, we characterize the role of FliK in the switching probability in the absence of the hook. When RflH/Flk was missing in the hook mutants, the switching occurred at a low probability. Overproduction of FliK significantly increased the switching probability although not at the wild-type level. An in-frame deletion of residues 129 through 159 of FliK weakened the interaction with the hook protein but not with the hook-capping protein, producing polyhooks with filaments attached. We suggest that temporary association of FliK with the inner surface of the hook during FliK secretion results in a pause in the secretion process to allow the C-terminal switch domain of FliK to be positioned and appropriately oriented near FlhB for catalysing the switch and that RflH/Flk interferes with premature switch by preventing access of cytoplasmic FliK to FlhB and even that of FliK during its secretion until hook length reaches 55 nm; only then FliKC passes the RflH/Flk block.  相似文献   

11.
Motility in the photosynthetic bacterium Rhodobacter sphaeroides is achieved by the unidirectional rotation of a single subpolar flagellum. In this study, transposon mutagenesis was used to obtain nonmotile flagellar mutants from this bacterium. We report here the isolation and characterization of a mutant that shows a polyhook phenotype. Morphological characterization of the mutant was done by electron microscopy. Polyhooks were obtained by shearing and were used to purify the hook protein monomer (FlgE). The apparent molecular mass of the hook protein was 50 kDa. N-terminal amino acid sequencing and comparisons with the hook proteins of other flagellated bacteria indicated that the Rhodobacter hook protein has consensus sequences common to axial flagellar components. A 25-kb fragment from an R. sphaeroides WS8 cosmid library restored wild-type flagellation and motility to the mutant. Using DNA adjacent to the inserted transposon as a probe, we identified a 4.6-kb SalI restriction fragment that contained the gene responsible for the polyhook phenotype. Nucleotide sequence analysis of this region revealed an open reading frame with a deduced amino acid sequence that was 23.4% identical to that of FliK of Salmonella typhimurium, the polypeptide responsible for hook length control in that enteric bacterium. The relevance of a gene homologous to fliK in the uniflagellated bacterium R. sphaeroides is discussed.  相似文献   

12.
Role of the flaR gene in flagellar hook formation in Salmonella spp.   总被引:14,自引:11,他引:3       下载免费PDF全文
Flagellar filaments were reconstituted by polymerization with exogenously supplied flagellin monomers at the tips of normal hooks on Salmonella cells which were missing the filaments because of mutations in either the flaL or flaU gene or the flagellin genes H1 and H2. Reconstitution did not occur at the tips of polyhooks of the flaR mutant cells. Thus, the absence of flagellar filaments in the flaR mutant cells was probably caused by the inability of the polyhooks to work as polymerization nuclei for flagellin. A Phf+ mutant which produced polyhooks with flagellar filaments was isolated from a flaR polyhook mutant. Genetic analysis of the Phf+ mutant showed that it carried an intracistronic suppressor mutation of the original flaR mutation. This result indicated that the flaR gene regulates hook length and initiates flagellin formation.  相似文献   

13.
A polyhook-producing strain of Caulobacter crescentus was isolated, and the polyhook protein was purified. The antigenicity and morphology of the polyhook structure are similar to the wild-type hook except that the mutant strain produces a hook structure at least 10-fold the length of wild-type hooks (1.0 versus 0.1 micrometers). The molecular weight of the polyhook protein, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, is 72,000, and the protein has a pI of approximately 6.1. Antibodies prepared against the polyhook protein were used to show that this protein is antigenically distinct from the Caulobacter flagellins. Amino acid analysis of the polyhook protein revealed compositional similarities to other gram-negative, bacterial hook proteins.  相似文献   

14.
Nine temperature-sensitive nonflagellate mutants defective in flaFV were isolated from a strain of Salmonella typhimurium. Among them three mutants were found to produce flagella with abnormally shaped (either straight or irregularly curved) hooks at the permissive temperature. Two mutations that rendered hooks straight were located in one of the eight segments of flaFV defined by deletion mapping. The mutation that rendered hooks irregularly curved was located in a different segment. An flaR mutation was introduced into the latter mutant. At the permissive temperature, the resulting double mutant produced polyhooks whose wavelength and amplitude were both exceedingly reduced. These polyhook structures were more thermolabile than those of the flaFV+ strain. Hook protein of the former strain was shown to have a slightly positive electric charge compared with that of the latter. From these results and other available information, it is inferred that flaFV is the structural gene for the hook protein in Salmonella.  相似文献   

15.
16.
The lengths of the hook structure of flagellar motors and of the needle of the injectosome are both carefully controlled, by apparently similar mechanisms. In this paper we propose a novel mechanism for this length control and develop a mathematical model of this process which shows excellent agreement with published data on hook lengths.The proposed mechanism for length control (described using biochemical nomenclature appropriate for hooks) is as follows: Hook growth is terminated when the C-terminus of the length control molecule FliK interacts with FlhB, the secretion gatekeeper. The probability of this interaction is an increasing function of the length of the hook for two reasons. First, FliK is secreted through the hook intermittently during hook growth. Second, the probability of interaction with FlhB is a function of the amount of time the C-terminus of a secreted FliK spends in the vicinity of FlhB. This time is short when the hook is short because the folding of FliK exiting the distal end of the hook acts to pull the FliK molecule through the hook rapidly. In contrast, this time is much longer when the hook is longer than the unfolded FliK polymer since movement through the tube is not enhanced by folding. Thus, it is much more likely that interaction will occur when the hook is long than when the hook is short.  相似文献   

17.
The bacterial flagellum consists of a long external filament connected to a membrane-embedded basal body at the cell surface by a short curved structure called the hook. In Salmonella enterica, the hook extends 55 nm from the cell surface. FliK, a secreted molecular ruler, controls hook length. Upon hook completion, FliK induces a secretion-specificity switch to filament-type substrate secretion. Here, we demonstrate that an infrequent ruler mechanism determines hook length. FliK is intermittently secreted during hook polymerization. The probability of the specificity switch is an increasing function of hook length. By uncoupling hook polymerization from FliK expression, we illustrate that FliK secretion immediately triggers the specificity switch in hooks greater than the physiological length. The experimental data display excellent agreement with a mathematical model of the infrequent ruler hypothesis. Merodiploid bacteria expressing simultaneously short and long ruler variants displayed hook-length control by the short ruler, further supporting the infrequent ruler model. Finally, the velocity of FliK secretion determines the probability of a productive FliK interaction with the secretion apparatus to change secretion substrate specificity.  相似文献   

18.
The length of the flagellar hook is controlled by the soluble protein FliK. FliK is structurally divided into two halves with distinct functions; the N-terminal half determines hook length, while the C-terminal half switches the secretion substrate specificity, consequently terminating hook elongation. FliK properly achieves both functions only when it is secreted. In a previous paper, we showed that a temperature-sensitive flgE mutant of Salmonella enterica serovar Typhimurium, SJW2219, produced basal bodies with short hooks (average length, 25 nm) at 37°C. In this study, we show that the mutant cells grown at 37°C secrete FliK but not flagellin (FliC), indicating that FliK is abortively secreted into the medium when the hook is shorter than 30 nm. In contrast, FliK unfailingly switches the gate modes when the hook is longer than 30 nm. Taking the FliC, FliK, and FlgM secretion patterns into account, we conclude that FliK determines the minimal length of the hook. We will discuss how FliK detects the critical switching point of the secretion gate.  相似文献   

19.
A molecular ruler, FliK, controls the length of the flagellar hook. FliK measures hook length and catalyses the secretion‐substrate specificity switch from rod‐hook substrate specificity to late substrate secretion, which includes the filament subunits. Here, we show normal hook‐length control and filament assembly in the complete absence of the C‐ring thus refuting the previous ‘cup’ model for hook‐length control. Mutants of C‐ring components, which are reported to produce short hooks, show a reduced rate of hook–basal body assembly thereby allowing for a premature secretion‐substrate specificity switch. Unlike fliK null mutants, hook‐length control in an autocleavage‐defective mutant of flhB, the protein responsible for the switch to late substrate secretion, is completely abolished. FliK deletion variants that retain the ability to measure hook length are secreted thus demonstrating that FliK directly measures rod‐hook length during the secretion process. Finally, we present a unifying model accounting for all published data on hook‐length control in which FliK acts as a molecular ruler that takes measurements of rod‐hook length while being intermittently secreted during the assembly process of the hook–basal body complex.  相似文献   

20.
The hooks of the flagella of Salmonella typhimurium were purified by a newly developed method, using a flaL mutant without a filament, and the hook components were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. As a result, we detected three protein species in addition to hook protein. We call these three proteins hook-associated proteins (HAPs). Their molecular weights were 59,000 for HAP1, 53,000 for HAP2, and 31,000 for HAP3. The HAP1/hook protein/HAP3/HAP2 molar ratio, calculated from their relative amounts and their molecular weights, was 1:10:1.1:0.53. The compositions of HAPs were analyzed in the hooks from the other filamentless mutants which were defective in H1 H2, flaV, flaU, or flaW. Hooks from the H1 H2 mutant had the same HAP composition as hooks from the flaL mutant. Hooks from the flaV mutants contained HAP1 and HAP3. Hooks from the flaU mutants contained HAP1. Hooks from the flaW mutants contained a very small amount of HAP3. From these results, the process of hook morphogenesis and the genes responsible for each step were postulated. Electron micrographs of hooks from the filamentless mutants showed that hooks which contained all three HAPs had a sharp clawlike tip, whereas hooks lacking any HAP had a flat tip. Electron micrographs of hooks treated with antibody against the hook protein showed that each claw-shaped end was not covered with antibody. These results strongly suggest that all three HAPs or at least some of them are located at the claw-shaped end and play an essential role in filament formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号