首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brevican is a brain-specific proteoglycan which is found in specialized extracellular matrix structures called perineuronal nets. Brevican increases the invasiveness of glioma cells in vivo and has been suggested to play a role in central nervous system fiber tract development. To study the role of brevican in the development and function of the brain, we generated mice lacking a functional brevican gene. These mice are viable and fertile and have a normal life span. Brain anatomy was normal, although alterations in the expression of neurocan were detected. Perineuronal nets formed but appeared to be less prominent in mutant than in wild-type mice. Brevican-deficient mice showed significant deficits in the maintenance of hippocampal long-term potentiation (LTP). However, no obvious impairment of excitatory and inhibitory synaptic transmission was found, suggesting a complex cause for the LTP defect. Detailed behavioral analysis revealed no statistically significant deficits in learning and memory. These data indicate that brevican is not crucial for brain development but has restricted structural and functional roles.  相似文献   

2.
Brevican is known to be an abundant extracellular matrix component in the adult brain and a structural constituent of perineuronal nets. We herein show that brevican, tenascin-R (TN-R) and phosphacan are present at the nodes of Ranvier on myelinated axons with a particularly large diameter in the central nervous system. A brevican deficiency resulted in a reorganization of the nodal matrices, which was characterized by the shift of TN-R, and concomitantly phosphacan, from an axonal diameter-dependent association with nodes to an axonal diameter independent association. Supported by the co-immunoprecipitation results, these observations indicate that the presence of TN-R and phosphacan at nodes is normally brevican-dependent, while in the absence of brevican these molecules can also be recruited by versican V2. The versican V2 and Bral1 distribution was not affected, thus indicating a brevican-independent role of these two molecules for establishing hyaluronan-binding matrices at the nodes. Our results revealed that brevican plays a crucial role in determining the specialization of the hyaluronan-binding nodal matrix assemblies in large diameter nodes.  相似文献   

3.
Proteoglycans are among the major extracellular matrix components of the central nervous system. In the cerebral cortex and many subcortical regions, chondroitin sulphate proteoglycans, which are related to the aggrecan-versican- neurocan family, have been detected immunocytochemically in perineuronal nets that surround various types of neurons. This indicates that, in the brain, there is a nonhomogeneous but defined distribution of extracellular matrix components. The present study is a further attempt to characterize the perineuronal nets in the cerebral cortex. Sections obtained from fixed and unfixed rat brains were subjected to different enzymatic treatments prior to the visualization of perineuronal nets using N-acetylgal actosamine-binding Wisteria floribunda agglutinin, antibodies against chondroitin sulphate proteoglycans or hyaluronectin, and biotinylated hyaluronectin which detects hyaluronan. In all perineuronal nets the binding of the Wisteria floribunda agglutinin was abolished after the incubation of sections with chondroitinase ABC. The protein components of the proteoglycan complexes became easier to digest after removal of chondroitin sulphate chains or hyaluronan. Since only quantitative, and not qualitative, differences in the labelling properties and the structural appearance of cortical perineuronal nets were observed after the various treatments, it is concluded that, with regard to their proteoglycan composition, these structures have common basic properties  相似文献   

4.
Brevican is a neural proteoglycan implicated in a multitude of physiological and pathophysiological plasticity processes in the brain. It localizes to neuronal surfaces and contributes to the formation of specific types of extracellular matrix like the perineuronal nets or the perisynaptic or axon initial segment-based matrix in mature neuronal tissue. Via a variable degree of chondroitin sulfate attachment, limited proteolytic cleavage by matrix metalloproteinases, differential splicing and Ca(2+)-dependent binding to interaction partners it acts as a regulator in synaptic plasticity, glioma invasion, post-lesion plasticity or Alzheimer's disease. This review briefly summarizes its gene and protein structure, biochemical interactions and neurobiological functions.  相似文献   

5.
Lecticans, a family of chondroitin sulfate proteoglycans, represent the largest group of proteoglycans expressed in the nervous system. We previously showed that the C-type lectin domains of lecticans bind two classes of sulfated cell surface glycolipids, sulfatides and HNK-1-reactive sulfoglucuronylglycolipids (SGGLs). In this paper, we demonstrate that the interaction between the lectin domain of brevican, a nervous system-specific lectican, and cell surface SGGLs acts as a novel cell recognition system that promotes neuronal adhesion and neurite outgrowth. The Ig chimera of the brevican lectin domain bind to the surface of SGGL-expressing rat hippocampal neurons. The substrate of the brevican chimera promotes adhesion and neurite outgrowth of hippocampal neurons. The authentic, full-length brevican also promotes neuronal cell adhesion and neurite outgrowth. These activities of brevican substrates are neutralized by preincubation of cells with HNK-1 monoclonal antibodies and by pretreatment of the brevican substrates with purified SGGLs. Brevican and HNK-1 carbohydrates are coexpressed in specific layers of the developing hippocampus where axons from entorhinal neurons elongate. Our observations suggest that cell surface SGGLs and extracellular lecticans comprise a novel cell-substrate recognition system operating in the developing nervous system.  相似文献   

6.
Neuronal networks are balanced by mechanisms of homeostatic plasticity, which adjusts synaptic strength via molecular and morphological changes in the pre- and post-synapse. Here, we wondered whether the hyaluronic acid-based extracellular matrix (ECM) of the brain is involved in mechanisms of homeostatic plasticity. We hypothesized that the ECM, being rich in chondroitin sulfate proteoglycans such as brevican, which are suggested to stabilize synapses by their inhibitory effect on structural plasticity, must be remodelled to allow for structural and molecular changes during conditions of homeostatic plasticity. We found a high abundance of cleaved brevican fragments throughout the hippocampus and cortex and in neuronal cultures, with the strongest labelling in perineuronal nets on parvalbumin-positive interneurons. Using an antibody specific for a brevican fragment cleaved by the matrix metalloprotease ADAMTS4, we identified the enzyme as the main brevican-processing protease. Interestingly, we found ADAMTS4 largely associated with synapses. After inducing homeostatic plasticity in neuronal cell cultures by prolonged network inactivation, we found increased brevican processing at inhibitory as well as excitatory synapses, which is in line with the ADAMTS4 subcellular localization. Thus, the ECM is remodelled in conditions of homeostatic plasticity, which may liberate synapses to allow for a higher degree of structural plasticity.  相似文献   

7.
We developed a method to extract differentially chondroitin sulfate proteoglycans (CSPGs) that are diffusely present in the central nervous system (CNS) matrix and CSPGs that are present in the condensed matrix of perineuronal nets (PNNs). Adult rat brain was sequentially extracted with Tris-buffered saline (TBS), TBS-containing detergent, 1 m NaCl, and 6 m urea. Extracting tissue sections with these buffers showed that the diffuse and membrane-bound CSPGs were extracted in the first three buffers, but PNN-associated CSPGs remained and were only removed by 6 m urea. Most of the CSPGs were extracted to some degree with all the buffers, with neurocan, brevican, aggrecan, and versican particularly associated with the stable urea-extractable PNNs. The CSPGs in stable complexes only extractable in urea buffer are found from postnatal day 7-14 coinciding with PNN formation. Disaccharide composition analysis indicated a different glycosaminoglycan (GAG) composition for PGs strongly associated with extracellular matrix (ECM). For CS/dermatan sulfate (DS)-GAG the content of nonsulfated, 6-O-sulfated, 2,6-O-disulfated, and 4,6-O-disulfated disaccharides were higher and for heparan sulfate (HS)-GAG, the content of 6-O-sulfated, 2-N-, 6-O-disulfated, 2-O-, 2-N-disulfated, and 2-O-, 2-N-, 6-O-trisulfated disaccharides were higher in urea extract compared with other buffer extracts. Digestions with chondroitinase ABC and hyaluronidase indicated that aggrecan, versican, neurocan, brevican, and phosphacan are retained in PNNs through binding to hyaluronan (HA). A comparison of the brain and spinal cord ECM with respect to CSPGs indicated that the PNNs in both parts of the CNS have the same composition.  相似文献   

8.
BEHAB (brain-enriched hyaluronan-binding protein)/brevican is the most abundant chondroitin sulfate proteoglycan in the extracellular matrix of the adult rat brain. BEHAB/brevican expression is up-regulated coincident with glial cell proliferation and/or motility, including during early central nervous system development and in invasive glioma. An understanding of the molecular interactions that mediate BEHAB/brevican function is still in its infancy because of the existence of several BEHAB/brevican isoforms, each of which may mediate different functions. Here, we describe a novel BEHAB/brevican isoform, B/b130, and demonstrate that it is neither the glycosylphosphatidylinositol-linked splice variant of BEHAB/brevican nor a cleavage product of the full-length protein (B/b150). B/b130 is an underglycosylated isoform of BEHAB/brevican, lacking glycosaminoglycan chains as well as most of the sugars that invest B/b150. B/b130 localizes exclusively to the particulate fraction of rat brain and associates with the cell membrane by a previously undescribed calcium-independent mechanism. In addition, B/b130 is the major isoform of BEHAB/brevican that is up-regulated in a rat model of invasive glioma and may therefore contribute to the invasive ability of glioma cells. Further understanding of BEHAB/brevican isoforms will advance our knowledge of the function of this ECM component and may help identify new potential therapeutic targets for primary brain tumors.  相似文献   

9.
Chondroitin sulfate (CS) and the CS-rich extracellular matrix structures called perineuronal nets (PNNs) restrict plasticity and regeneration in the CNS. Plasticity is enhanced by chondroitinase ABC treatment that removes CS from its core protein in the chondroitin sulfate proteoglycans or by preventing the formation of PNNs, suggesting that chondroitin sulfate proteoglycans in the PNNs control plasticity. Recently, we have shown that semaphorin3A (Sema3A), a repulsive axon guidance molecule, localizes to the PNNs and is removed by chondroitinase ABC treatment (Vo, T., Carulli, D., Ehlert, E. M., Kwok, J. C., Dick, G., Mecollari, V., Moloney, E. B., Neufeld, G., de Winter, F., Fawcett, J. W., and Verhaagen, J. (2013) Mol. Cell. Neurosci. 56C, 186–200). Sema3A is therefore a candidate for a PNN effector in controlling plasticity. Here, we characterize the interaction of Sema3A with CS of the PNNs. Recombinant Sema3A interacts with CS type E (CS-E), and this interaction is involved in the binding of Sema3A to rat brain-derived PNN glycosaminoglycans, as demonstrated by the use of CS-E blocking antibody GD3G7. In addition, we investigate the release of endogenous Sema3A from rat brain by biochemical and enzymatic extractions. Our results confirm the interaction of Sema3A with CS-E containing glycosaminoglycans in the dense extracellular matrix of rat brain. We also demonstrate that the combination of Sema3A and PNN GAGs is a potent inhibitor of axon growth, and this inhibition is reduced by the CS-E blocking antibody. In conclusion, Sema3A binding to CS-E in the PNNs may be a mechanism whereby PNNs restrict growth and plasticity and may represent a possible point of intervention to facilitate neuronal plasticity.  相似文献   

10.
11.
Subsets of neurons ensheathed by perineuronal nets containing chondroitin unsulfate proteoglycan have been immunohistochemically mapped throughout the rat central nervous system from the olfactory bulb to the spinal cord. A variable proportion of neurons were outlined by immunoreactivity for the monoclonal antibody (Mab 1B5), but only after chondroitinase ABC digestion. In forebrain cortical structures the only immunoreactive nets were around interneurons; in contrast, throughout the brainstem and spinal cord a large proportion of projection neurons were surrounded by intense immunoreactivity. Immunoreactivity was ordinarily found in the neuropil between neurons surrounded by an immunopositive net. By contrast, within the pyriform cortex the neuropil of the plexiform layer was intensely immunoreactive even though no perineuronal net could be found. The presence of perineuronal nets could not be correlated with any single class of neurons; however a few functionally related groups (e.g., motor and motor-related structures: motor neurons both in the spinal cord and in the efferent somatic nuclei of the brainstem, deep cerebellar nuclei, vestibular nuclei; red nucleus, reticular formation; central auditory pathway: ventral cochlear nucleus, trapezoid body, superior olive, nucleus of the lateral lemniscus, inferior colliculus, medial geniculate body) were the main components of the neuronal subpopulation displaying chondroitin unsulfate proteoglycans in the surrounding extracellular matrix. The immunodecorated neurons found in the present study and those shown by different monoclonal antibodies or by lectin cytochemisty, revealed consistent overlapping of their distribution patterns.  相似文献   

12.
Glycosaminoglycans (GAG) were isolated from bovine retinal microvessel basement membrane (RMV-BM) and quantitatively analyzed using a recently described competitive binding assay that is specific for and sensitive to nanogram amounts of heparan and chondroitin sulfates. Treatment of osmotically lysed retinal microvessels with the ionic detergent deoxycholate (DOC), required for liberation of the extracellular matrix for plasma membrane lipoproteins and purification of the insoluble matrix, solubilized less than 5% of the GAG in the water-insoluble material. Total GAG content in the DOC-insoluble basement membranes was approx. 0.52 micrograms/mg dry weight; about 70% of the measurable GAG was resistant to both chondroitinase ABC and chondroitinase AC digestion and was sensitive to nitrous acid treatment, indicating its heparan sulfate nature. Cellulose acetate electrophoresis revealed two bands, one of which had an electrophoretic mobility similar to heparan sulfate standard and was sensitive to nitrous acid; the other migrated in the same position as chondroitin sulfate standard and was sensitive to chondroitinase ABC and chondroitinase AC digestion. These results provide evidence that RMV-BM contains chondroitin sulfate(s) as well as heparan sulfate, and offer the first quantitative analysis of GAG in this extracellular matrix.  相似文献   

13.
Extracellular matrix molecules--including chondroitin sulfate proteoglycans, hyaluronan, and tenascin-R--are enriched in perineuronal nets (PNs) associated with subsets of neurons in the brain and spinal cord. In the present study, we show that similar cell type-dependent extracellular matrix aggregates are formed in dissociated cell cultures prepared from early postnatal mouse hippocampus. Starting from the 5th day in culture, accumulations of lattice-like extracellular structures labeled with Wisteria floribunda agglutinin were detected at the cell surface of parvalbumin-expressing interneurons, which developed after 2-3 weeks into conspicuous PNs localized around synaptic contacts at somata and proximal dendrites, as well as around axon initial segments. Physiological recording and intracellular labeling of PN-expressing neurons revealed that these are large fast-spiking interneurons with morphological characteristics of basket cells. To study mechanisms of activity-dependent formation of PNs, we performed pharmacological analysis and found that blockade of action potentials, transmitter release, Ca2+ permeable AMPA subtype of glutamate receptors or L-type Ca2+ voltage-gated channels strongly decreased the extracellular accumulation of PN components in cultured neurons. Thus, we suggest that Ca2+ influx via AMPA receptors and L-type channels is necessary for activity-dependent formation of PNs. To study functions of chondroitin sulfate-rich PNs, we treated cultures with chondroitinase ABC that resulted in a prominent reduction of several major PN components. Removal of PNs did not affect the number and distribution of perisomatic GABAergic contacts but increased the excitability of interneurons in cultures, implicating the extracellular matrix of PNs in regulation of interneuronal activity.  相似文献   

14.
Brevican, a proteoglycan of the lectican family, inhibits neurite outgrowth and may also stabilize synapses. Little is known about its expression or function in vitro. This study seeks to determine whether a brevican-containing matrix is present in neural cultures, and if so, how the production of brevican may be modulated. To accomplish this, the content of brevican and its proteolytic fragments were measured in primary cultures of neurons, astrocytes and microglia after treatment with cytokines. These experiments revealed that astrocytes and neurons express several isoforms of brevican, whereas microglia do not produce this proteoglycan. Cleavage fragments of brevican were found primarily in neuronal and astrocyte culture medium. ADAMTS4 (a disintegrin and metalloproteinase with thrombospondin motifs), a protease that selectively cleaves lecticans, was detected in cultures of neurons, astrocytes and microglia. When astrocytes were challenged with various cytokines, it was found that treatment with transforming growth factor beta (TGFbeta) resulted in a marked increase in intact brevican in the culture medium that was accompanied by a trend for a decrease in ADAMTS-generated fragments of brevican and apparent ADAMTS activity. Thus, TGFbeta may play a role in neuronal plasticity through its regulation of brevican and the activity of the ADAMTSs.  相似文献   

15.
We have examined the regional distribution of several chondroitin sulfate proteoglycans (neurocan, brevican, versican, aggrecan, phosphacan), of their glycosaminoglycan moieties, and of tenascin-R in the spinal cord of adult rat. The relationships of these molecules with glial and neuronal populations, identified with appropriate markers, were investigated by using multiple fluorescence labeling combined with confocal microscopy. The results showed that the distribution of the examined molecules was similar at all spinal cord levels but displayed area-specific differences along the dorso-ventral axis, delimiting functionally and developmentally distinct areas. In the gray matter, laminae I and II lacked perineuronal nets (PNNs) of extracellular matrix and contained low levels of chondroitin sulfate glycosaminoglycans (CS-GAGs), brevican, and tenascin-R, possibly favoring the maintenance of local neuroplastic properties. Conversely, CS-GAGs, brevican, and phosphacan were abundant, with numerous thick PNNs, in laminae III-VIII and X. Motor neurons (lamina IX) were surrounded by PNNs that contained all molecules investigated but displayed various amounts of CS-GAGs. Double-labeling experiments showed that the presence of PNNs could not be unequivocally related to specific classes of neurons, such as motor neurons or interneurons identified by their expression of calcium-binding proteins (parvalbumin, calbindin, calretinin). However, a good correlation was found between PNNs rich in CS-GAGs and the neuronal expression of the Kv3.1b subunit of the potassium channel, a marker of fast-firing neurons. This observation confirms the correlation between the electrophysiological properties of these neurons and the specific composition of their microenvironment.  相似文献   

16.
Y Atoji  Y Kitamura  Y Suzuki 《Acta anatomica》1990,139(2):151-153
The perineuronal extracellular matrix of the canine superior olivary nuclei was examined by the histochemical method. The extracellular matrix was stained with Alcian blue (pH 1.0 and 2.5), high iron diamine and ruthenium red. The staining intensity of Alcian blue in the extracellular matrix was remarkably reduced after chondroitinase ABC digestion but not after that of heparitinase or hyaluronidase. These results indicate that the extracellular matrix consists of proteoglycans and contains the chondroitin sulfate proteoglycan.  相似文献   

17.
Gary SC  Zerillo CA  Chiang VL  Gaw JU  Gray G  Hockfield S 《Gene》2000,256(1-2):139-147
BEHAB (Brain Enriched HyAluronan Binding)/brevican, a brain-specific member of the lectican family of chondroitin sulfate proteoglycans (CSPGs), may play a role in both brain development and human glioma. BEHAB/brevican has been cloned from bovine, mouse and rat. Two isoforms have been reported: a full-length isoform that is secreted into the extracellular matrix (ECM) and a shorter isoform with a sequence that predicts a glycophosphatidylinositol (GPI) anchor. Here, we report the characterization of BEHAB/brevican isoforms in human brain. First, BEHAB/brevican maps to human chromosome 1q31. Second, we report the sequence of both isoforms of human BEHAB/brevican. The deduced protein sequence of full-length, secreted human BEHAB/brevican is 89.7, 83.3 and 83.2% identical to bovine, mouse and rat homologues, respectively. Third, by RNase protection analysis (RPA) we show the developmental regulation of BEHAB/brevican isoforms in normal human cortex. The secreted isoform is highly expressed from birth through 8years of age and is downregulated by 20years of age to low levels that are maintained in the normal adult cortex. The GPI isoform is expressed at uniformly low levels throughout development. Fourth, we confirm and extend previous studies from our laboratory, here demonstrating the upregulation of BEHAB/brevican mRNA in human glioma quantitatively. RPA analysis shows that both isoforms are upregulated in glioma, showing an approximately sevenfold increase in expression over normal levels. In contrast to the developmental regulation of BEHAB/brevican, where only the secreted isoform is regulated, both isoforms are increased in parallel in human glioma. The distinct patterns of regulation of expression of the two isoforms suggest distinct mechanisms of regulation of BEHAB/brevican during development and in glioma.  相似文献   

18.
The adult neural parenchyma contains a distinctive extracellular matrix that acts as a barrier to cell and neurite motility. Nonneural tumors that metastasize to the central nervous system almost never infiltrate it and instead displace the neural tissue as they grow. In contrast, invasive gliomas disrupt the extracellular matrix and disperse within the neural tissue. A major inhibitory component of the neural matrix is the lectican family of chondroitin sulfate proteoglycans, of which brevican is the most abundant member in the adult brain. Interestingly, brevican is also highly up-regulated in gliomas and promotes glioma dispersion by unknown mechanisms. Here we show that brevican secreted by glioma cells enhances cell adhesion and motility only after proteolytic cleavage. At the molecular level, brevican promotes epidermal growth factor receptor activation, increases the expression of cell adhesion molecules, and promotes the secretion of fibronectin and accumulation of fibronectin microfibrils on the cell surface. Moreover, the N-terminal cleavage product of brevican, but not the full-length protein, associates with fibronectin in cultured cells and in surgical samples of glioma. Taken together, our results provide the first evidence of the cellular and molecular mechanisms that may underlie the motility-promoting role of brevican in primary brain tumors. In addition, these results underscore the important functional implications of brevican processing in glioma progression.  相似文献   

19.
Structural remodeling or repair of neural circuits depends on the balance between intrinsic neuronal properties and regulatory cues present in the surrounding microenvironment. These processes are also influenced by experience, but it is still unclear how external stimuli modulate growth-regulatory mechanisms in the central nervous system. We asked whether environmental stimulation promotes neuronal plasticity by modifying the expression of growth-inhibitory molecules, specifically those of the extracellular matrix. We examined the effects of an enriched environment on neuritic remodeling and modulation of perineuronal nets in the deep cerebellar nuclei of adult mice. Perineuronal nets are meshworks of extracellular matrix that enwrap the neuronal perikaryon and restrict plasticity in the adult CNS. We found that exposure to an enriched environment induces significant morphological changes of Purkinje and precerebellar axon terminals in the cerebellar nuclei, accompanied by a conspicuous reduction of perineuronal nets. In the animals reared in an enriched environment, cerebellar nuclear neurons show decreased expression of mRNAs coding for key matrix components (as shown by real time PCR experiments), and enhanced activity of matrix degrading enzymes (matrix metalloproteinases 2 and 9), which was assessed by in situ zymography. Accordingly, we found that in mutant mice lacking a crucial perineuronal net component, cartilage link protein 1, perineuronal nets around cerebellar neurons are disrupted and plasticity of Purkinje cell terminal is enhanced. Moreover, all the effects of environmental stimulation are amplified if the afferent Purkinje axons are endowed with enhanced intrinsic growth capabilities, induced by overexpression of GAP-43. Our observations show that the maintenance and growth-inhibitory function of perineuronal nets are regulated by a dynamic interplay between pre- and postsynaptic neurons. External stimuli act on this interaction and shift the balance between synthesis and removal of matrix components in order to facilitate neuritic growth by locally dampening the activity of inhibitory cues.  相似文献   

20.
Summary The nature of Cuprolinic Blue-positive anionic filaments in mouse lung alveoli has been characterized. The contrast of filaments in the alveolar basement membrane of type I epithelial cells was lost on treatment with nitrous acid and pronase (without prefixation). In contrast, neither neuraminidase, chondroitinase ABC or AC, norStreptomyces hyaluronidase had any effect. Treatment with pronase (after prefixation) and 2.0m MgCl2 (after prefixation) also had no effect, indicating that the filaments are heparan sulphate proteoglycans. The filaments in the alveolar basement membrane of type II epithelial cells and in the capillary basement membrane of the endothelial cells were also nitrous acid sensitive, but chondroitinase ABC-insensitive. A model in which the whole alveolus contains a single layer of heparan sulphate-containing proteoglycan monomers is proposed. Furthermore, the collagen fibril associated filaments remained unaffected after treatment with nitrous acid, neuraminidase orStreptomyces hyaluronidase, or after digestion with pronase (after prefixation) and treatment with 2.0m MgCl2 (after prefixation). These filaments, however, could no longer be detected when digestion with chondroitinase ABC or pronase (without prefixation) was applied; chondroitinase AC treatment clearly affected the filaments, although they still were visible. These results indicate that the filaments are dermatan sulphate-containing proteoglycans. Some functional aspects of the proteoglycans are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号