首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Permanent mounts of certain protozoa and small worms are obtained as follows: kill suspensions of the organisms with Feulgen's fixative (6% HgCl2 in 2% aqu. acetic acid) for 3 to 24 hours. After pipetting off the fixative, add successively: 70% iodized alcohol; ditto, 30 minutes later; 50%, then 35% alcohol; 2 baths distilled water; normal HCl. Transfer to cold water and heat to 60°C for 4 to 5 minutes or longer. Cool under running water; and wash in distilled water.

Stain 1 to 3 hours in Feulgen's fuchsin sulfurous acid (1 g. of a suitable basic fuchsin, e. g. rosanilin hydrochloride, boiled in 200 cc. water, cooled, and allowed to stand 24 hours after adding 20 cc. normal HCl and 1 g. sodium bisulfite). Pass thru 3 baths of 200 cc. distilled water with 10 cc. normal HCl and 1 g. sodium bisulfite. Transfer to water and then to 35%, 70%, and 95% alcohols successively. Counterstain with fast green FCF, orange G or eosin Y in 95% alcohol. Pass thru two changes of absolute alcohol.

Transfer to 10% Venetian turpentine and place in a dessicator; mount after the turpentine has become concentrated.

If sections instead of total mounts are desired, the material should go from absolute alcohol, thru alcohol-xylol and xylol to paraffin (or preferably paraffin of M. P. 56°C with 3% bees-wax). The paraffin may be added to the material in the test tube, and cooled after the organisms have settled. Then break the tube, trim a block, and cut.  相似文献   

2.
Five different physiological functions of the rabbit (hard faeces and urine excretion, food and water intake and locomotor activity) were registered during LD 12:12 and during continuous light conditions (LL).

(1) In LD 12:12 a strong synchronization of the five parameters existed. The minima of all functions consistently occurred during the hours of light. The nocturnal percentage of overall 24-hr events was increased significantly in 'hard faeces excretion' (66±8 (S.D.) %), 'water intake' (64±15 (S.D.) %) and 'urine excretion' (58±10 (S.D.) %). The nocturnal percentage of locomotor activity was significantly increased during the dark-hours in 9 out of 14 animals. In the other five individuals prominent peaks were present even during the photoperiod. On the average of all 14 animals 5S±13 (S.D.) % of the 24 hr events of locomotor activity occurred during the night. Despite a trough during the cessation of hard faeces excretion the events of food intake were not elevated significantly during the dark hours.

(2) During LL the synchronization of the five functions within each animal persisted during the complete 90-day LL period. A free-running circadian rhythm with-: = 24.8±0.5 (S.D.) hr was present in the four rabbits kept in LL conditions within 5-16 days after the withdrawal of the zeitgeber.

(3) In addition to the circadian period the power spectrum analysis of data obtained during LD 12:12 revealed significant ultradian periods of an average period length of 11,6 hr (hard faeces and urine excretion), 8 hr (food and water intake, locomotor activity) and 4 hr (food intake, locomotor activity). During the free-run ultradian periods of 8 and 3.2-4.2 hr were significant in almost all parameters.

(4) During LL the level of locomotor activity was reduced for 13±16 (S.D.) %, the events of food intake were increased for 17±12 (S.D.) %.

(5) The reinserted LD 12:12 zeitgeber re-entrained the circadian rhythms within 25-45 days.

(6) These results provided evidence of a predominant nocturnality of the rabbits under investigation.  相似文献   

3.
The fixing action of 10% formalin solution alone and with formic, acetic, propionic, butyric, lactic, monochloracetic, dichloracetic, or trichloracetic acid was studied by means of stains with silver, osmic acid and cresyl violet. The following conclusions were reached:

1. In general, better fixation and staining was obtained with acid than without.

2. Less difference was seen in comparing one acid with another than was expected before the experiments were made.

3. Propionic, butyric, and dichloracetic showed no promise of having practical value.

4. Formic and monochloracetic acids as modifiers gave superior stains with osmic acid, while silver and cresyl violet stains of the same material were about equal to those made from formalin-acetic fixed material.

5. Lactic acid caused somewhat more distortion of tissue elements than the others but was compatible with good staining.

6. Acetic acid was most effective in concentrations of 3 to 5% while the stronger acids such as formic, monochloracetic, lactic and trichloracetic were effective in concentrations of 0.5 to 1%.  相似文献   

4.
Phosphatidylcholine containing large amounts of long polyunsaturated fatty acid, eicosapentaenoic acid (C20:5) and docosahexaenoic acid (C22:6), was synthesized in isooctane. Immobilized phospholipase A2 was used as a catalyst. A parallel non-enzymatic esterification reaction was investigated in separate experiments.

The concentrations of lyso-phosphatidylcholine, polyunsaturated fatty acids, water and the enzyme were varied over wide ranges as were the temperature and the reaction time. The type of enzyme, carrier and immobilization procedure were held constant.

The yield of phosphatidylcholine was relatively high (about 21%) when the concentration of polyunsaturated fatty acids was high (300 mg/g of reaction mixture) and the water content was low (below 30% of the dry immobilized enzyme). The highest yield of phosphatidylcholine was found at 80 hours and 75°C. However, at this temperature an extensive non-enzymatic reaction between polyunsaturated fatty acids and lyso-phosphatidylcholine occurred. At 80°C the polyunsaturated fatty acids were partly oxidized. Therefore, a temperature of 45°C to 65°C is probably the optimum temperature for the reaction.  相似文献   

5.
A method is described for staining nucleoli intensely by treating tissues with formaldehyde, hydrolysing in normal HC1 at 60°C. and staining with aceto-carmine. With correct hydrolysis time, chromosomes and cytoplasm are almost colorless.

Formaldehyde increases the acidity of cell parts, especially the nucleolus, presumably by neutralizing the basic protein groups, and increases the resistance to hydrolysis, perhaps by protecting the phospholipoprotein complexes which are most abundant in the nucleolus.

Hydrolysis reduces the acidity of cell parts, chiefly by removal of nucleic acids.

Aceto-carmine stains cell structures which are weakly acid in character (about pH 4-5) probably by precipitating as large dye aggregates.

The technic appears to be highly specific for nucleoli and related cell bodies.  相似文献   

6.
The following fixative is recommended for tissues vitally stained with trypan blue: Chloroform, 2 parts; absolute ethyl alcohol, 2 parts; glacial acetic acid, 1 part; mercuric chloride to the point of saturation.

The tissue should be fixed 1 to 2 hours; transferred to 95% ethyl alcohol for 12 hours; to absolute alcohol for 12 to 24 hours; to a mixture of absolute alcohol and xylol for 1/2 hour, and finally to xylol, before embedding in paraffin. Cedar oil may be used for clearing in the place of xylol; in that case the tissues should be transferred from absolute alcohol to a mixture of absolute alcohol and cedar oil for 24 hours before placing in cedar oil alone.

Various counterstains can be used; Mayer's carmalum is excellent.  相似文献   

7.
The authors have found a modification of the Feulgen reaction to be a satisfactory stain for tissue in the block.

Pieces of fresh mammalian tissue not thicker than 5 mm. are fixed for approximately 48 hours at 25° C. in a mixture of equal parts of 5% aqueous sulfosalicylic acid and saturated aqueous picric acid. They are washed for 30 minutes in three ten-minute changes of distilled water and placed in Feulgen's staining solution diluted to one-half strength with distilled water. The staining solution is allowed to act for 24 hours (2 to 3 mm. thick blocks) up to 48 hours for 5 mm. thickness. After staining, the specimens are transferred to a mixture of sodium bisulfite, 0.5 g. and N hydrochloric acid, 5 ml. in' 100 ml. of distilled water. Two changes of IS to 30 min. each in the acid sulfite are given and these are followed by dehydration through 50%, 70% and 95% alcohol. One to two hours are allowed for each change except the last 95%, in which the stained tissue is allowed to remain overnight. The dehydration is completed in two changes of absolute alcohol with subsequent clearing in xylene and embedding in paraffin. Sections may be cut 10 μ or other thickness desired, mounted on slides, paraffin removed, and covered in the usual manner. Nuclei stain reddish violet against a lemon yellow background when the stain is typical. Orange G, 200 mg. per 100 ml. may be added to the fixing fluid if a more polychromatic effect is desired.  相似文献   

8.
Lebowich's technic is outlined for simultaneous dehydration and infiltration of tissues by a medium composed of stearic acid, 56° C. paraffin, diethylene glycol, and monoethanolamine. The prices and places where these materials may be purchased are given.

Tissue for sectioning is placed in acetone, C.P., for 1 hour, then put directly into the soap-wax medium at 60° C. under reduced pressure, and finally embedded in new soap-wax.

Modifications include a simplification of the apparatus used by Lebowich. A preserving jar fitted with a rubber stopper serves as a vacuum chamber, and use of an aspirator accomplishes the reduction of pressure. With invertebrate embryos up to 1000 μ diameter no reduction of pressure is needed. Embryos are fixed, washed, placed in acetone, infiltrated in soap-wax, and embedded.

By this soap-wax method the alcohols, xylene, and overnight drying of affixed ribbons are eliminated. Tissue may be fixed, sectioned, stained, and permanently mounted within 6 to 8 hours.  相似文献   

9.
Several dyes, notably ponceau 2R, azofuchsin 3B, nitrazine yellow, and Biebrich scarlet may replace imported “ponceau de xylidin” in the Masson ponceau acid fuchsin mixture. Of these Biebrich scarlet appears to be the best and may be used without acid fuchsin.

A mixture of equal parts of 5% solutions of phosphomolybdic and phosphotungstic acids is much superior to either acid alone and gives adequate mordanting in 1 minute at 22°C.

With the fast green modification, times in plasma and fiber stains can be reduced to 2 minutes each. With anilin blue a 4-minute plasma stain is required. One-minute final differentiation in 1% acetic acid is adequate.

Primary mordanting of formalin material may be accomplished by 5 minutes in saturated aqueous mercuric chloride or 2 minutes in saturated alcoholic picric acid. Three minutes washing in running water is required after these mordants.  相似文献   

10.
The following salicylic acid-containing fixatives are useful for cytological studies in plants. The first, here designated HFC, is recommended for studies on somatic mitosis and chromosome individuality. The second, denoted HFP, is recommended for studies on plastids.

HFC is made up in two solutions. Sol. A: 100 cc. sat. aq. sol. salicylic acid, slight excess copper hydroxide, 20 cc. formaldehyde, 30 cc. normal ortho-phosphoric acid, 200 cc. water, 1 g. saponin; pH 1.8 to 1.9. Fix in Sol. A 15 to 30 minutes in partial vacuum of 35 cms. Then add Sol. B: 1% aq. chromic acid in equal parts. Continue fixation for period of 18 to 24 hours.

HFP is also made up in two solutions which are used in equal parts. Sol. A: 100 cc. sat. aq. sol. salicylic acid, slight excess copper hydroxide, 10 cc. normal ortho-phosphoric acid, 1/2 g. saponin. Sol. B: 187.5 cc. 1% aq. chromic acid, 50 cc. 2% osmic acid. Fixation technic as HFC.

Dehydrate and infiltrate with paraffin after Zirkle. Stain with crystal-violet-iodine.  相似文献   

11.
A quadruple staining procedure has been developed for staining pollen tubes in pistil. The staining mixture is made by adding the following in the order given: lactic acid, 80 ml; 1% aqueous malachite green, 4 ml; 1% aqueous acid fuchsia, 6 ml; 1% aqueous aniline blue, 4 ml; 1 % orange G in 50% alcohol, 2 ml; and chloral hydrate, 5 g. Pistils are fixed for 6 hr in modified Carnoy's fluid (absolute alcohol:chloroform:glacial acetic acid 6:4:1), hydrated in descending alcohols, transferred to stain and held there for 24 hr at 45±2 C They were then transferred to a clearing and softening fluid containing 78 ml lactic acid, 10 g phenol, 10 g chloral hydrate and 2 ml 1% orange G. The pistils were held there for 24 hr at 45±2 C, hydrolyzed in the clearing and softening fluid at 58±1 C for SO min, then stored in lactic acid for later use or immediately mounted in a drop of medium containing equal parts of lactic acid and glycerol for examination. Pollen tubes are stained dark blue to bluish red and stylar tissue light green to light greenish blue. This stain permits pollen tubes to be traced even up to their entry into the micropyle.  相似文献   

12.
Methods are proposed for staining plant chromosomes with the dye brilliant cresyl blue, and for making these stained preparations permanent by using polyvinyl alcohol mounting medium.

The stain, which is composed of 2% brilliant cresyl blue in 45% aqueous acetic or propionic acid, is used with fixed material in making smear preparations. The technics for staining are similar to those employed in the aceto-carmine method.

The mounting medium is made by mixing 56% polyvinyl alcohol, which is diluted in water to the consistency of thick molasses, with 22% lactic acid and 22% phenol by volume. The permanent slides are made by floating off the cover slip of the temporary slide in 70% alcohol, then applying the mounting medium and replacing the cover slip.

The chief advantages of the methods described are:

1)The preparation of the stain is rapid and simple. The batch of stain will be good with the first try.

2)The staining procedure in some instances is shorter than when using aceto-carmine.

3)The stain shows a high degree of specificity for nuclear structures and gives better results than aceto-carmine when used on certain plant tissues.

4)A minimum number of cells is lost in making the slides permanent when using polyvinyl alcohol mounting medium as the slide and cover slip are run through only one solution prior to mounting.

5)The mounting medium dries rapidly and this shortens the time required before critical examination of the permanent mounts can be made.  相似文献   

13.
A method for the determination of desferrioxamine-available iron in tissue fractions is described which involves incubation with desferrioxamine, extraction of desferrioxamine and its iron-bound form, ferrioxamine, and quantitation of these two forms of the drug by reversed-phase hplc analysis. Chelatable iron levels in the 1-10µMolar region could be accurately and reproducibly measured using this technique.

The desferrioxamine-available iron levels in both the cortex and medulla of rabbit kidneys were significantly elevated (up to 2-fold) after the organs had been subjected to 2 hours warm ischaemia or 24 hours cold storage at 0°C In hypertonic citrate solution. There was no change in the total iron content of the tissues under these circumstances and thus a redistribution of intracellular iron to more available pools had presumably taken place as a result of ischaemia. This redistribution of iron may be an important factor in the initiation of peroxidative damage to cell membranes upon reperfusion of the organ with oxygen.  相似文献   

14.
Procedures having enhanced reliability over older methods for both Bielschowsky and Cajal types of stain are described.

Fixation of embryos in a solution containing 4% formaldehyde and 0.5% trichloracetic acid greatly improved the staining of neural elements by Bielschowsky's method.

Among the variations of Cajal's type of staining tried, a modification of Ranson's pyridin-silver method gave the most complete staining of neurofibrillar elements. Washing for 0.5 to 1 hour after silver impregnation and shortening of the reduction time from 24 to 4 hours corrected the tendency of the method to overstain.  相似文献   

15.
A paraffin section method is described with a yellow-brown-black color range comparable to that of Ranson's pyridine silver block stain. After impregnation with activated protargol and reduction with a fine grain photographic developer, silver nitrate impregnation and reduction are repeated as often as necessary. The procedure is as follows:

Place hydrated sections of tissue fixed in chloral hydrate (25 g. in 100 ml. of 50% alcohol) in 1% aqueous protargol (Winthrop Chemical Co.) containing 5-6 g. metallic copper for 12-24 hours. After rinsing in 2 changes of distilled water, reduce 5 to 10 minutes in: Elon (Eastman Kodak Co.) 0.2 g., Na2SO3, dessicated, 10 g., hydroquinone 0.5 g., sodium borate powder 0.1 g., distilled water 100 ml. Wash thoroly in 4 or 5 changes of distilled water and place in 1% aqueous AgNO3 for 10-20 minutes at 28°-50° C. Rinse in 2 or 3 changes of distilled water and reduce in the elon-hydroquinone solution. After thoroly washing in 4 or 5 changes of distilled water, examine under microscope.

If too pale, treat again in silver nitrate for 10-20 minutes, rinse, reduce 5-10 minutes and wash thoroly until nerve fibers show distinct microscopic differentiation, then dehydrate, clear and mount.  相似文献   

16.
A microchemical test for cellulose applicable to fresh sections and commercial products is described. The test differs from the older technics in that materials tested are not permanently altered.

Two solutions are required: (1) 2% solution of iodine in 5% KI, diluted with 9 parts by volume of water containing 0.28% glycerin; (2) saturated aqueous LiCl.

Procedure: Apply 2 or 3 drops of solution 1 with a glass rod; allow the preparation to stand for 30 sec; blot with filter paper, drying as completely as possible. Apply one drop of solution 2, cover and examine. The color reaction will be obtained within 5 min. The reaction for pure cellulose is light blue. Reactions for 16 fibers are given in the table.

As a stain for demonstrating plant tissues the technic has been used in the Botany Department of Pomona College with much success; but this phase of the subject has not been extensively investigated.  相似文献   

17.
In describing a method of testing for the return of color in decolorized fuchsin for use in Endo Medium, French states that variations in hydrogen ion concentration fail to influence the appearance of color in this medium.

Duplications of this test were made using alcoholic and aqueous solutions of fuchsin and both sodium sulfite and sodium bisulfite as decolorizing agents.

In the decolorized alcoholic solutions of fuchsin the color failed to reappear when formalin was added, but a small amount of a weak solution of lactic acid caused the color to return.

Alcoholic solutions of fuchsin failed to decolorize in sodium bisulfite solutions until a few drops of NaOH were added. The color, then, reappeared immediately.

Solutions of peptones to which fuchsin had been added were substituted for the original fuchsin solution. Alcoholic and aqueous solutions of fuchsin were added to equal amounts of a 1% peptone solution. The peptone solutions varied in their hydrogen ion concentration and the results showed that those which were neutral decolorized readily while the more acid solutions were but partially decolorized.

Fuchsin decolorized according to results found in this test, was not satisfactory in the Endo medium, especially in the case of the aqueous solutions of fuchsin.

Experiments which were carried on by other workers and checked with this method all indicated that some acid is necessary to secure the restoration of color.  相似文献   

18.
In order to investigate the influence of antioxidative anti-inflammatory combination therapy (AACT) with dimethyl sulfoxide (DMSO). chlorpromaittic (CPZ) and vitamin E upon the activity of the inflammation. plasma lipid peroxide was measured as thiobarbituric acid reactive substance (TBARS) 12hrs postoperatively in the moclitied cecal ligation sepsis model in the mouse.

Significantly higher TBARS levels were found in the male control group (13.7 ± 0.7nmol MDA/ml) than in the female control group (11.6 ± 0.6nmol MDA/ml).

The operated male group had significantly higher TBARS levels (16.2 ± 0.6 nmol MDA/ml) than the unoperdted male control group (13.7 ± 0.7nmol MDA/ml). No increase of TBARS levels was observed in the operated female group.

Both male and female operated group. when postoperatively treated with AACT had the same TBARS level as the not operated male or female control group.

Survival curves of operated male and female group did not demonstrate any significant difference. The survival was better in an operated male and an operated female group. when postoperatively treated with AACT.

It was concluded that the applied TBARS test IS too insensitive to follow the activity of the inflammation and has no predictive value for the outcome of sepsis in this model.  相似文献   

19.
A modification of Donaldson's iodine-eosin stain for staining intestinal protozoa is presented. This modification consists of using high dilutions of colloidal iodine (Chandler)2 instead of Lugol's solution as well as high dilutions of eosin. A better resolution of the external and internal structures is brought about by the new method.

The procedure is as follows: A portion of the fecal material to be examined is suspended in a 0.6% salt solution; the suspension should be of a consistency so that one drop will make a satisfactory microscope mount under a cover glass. To ten parts of this suspension, in a test tube, is added one part of the stain which is prepared as follows:—

10 parts of distilled water

6 parts of a suspension of colloidal iodine (Chandler) containing 4% iodine—20% iodine suspensoid, Merck

1 part of a 10% water solution of anilin red, Merck (eosin yellowish)

Technicians will find, because iodine in the form of colloidal iodine is readily released to the organisms, that the use of this material is far superior to Lugol's solution hi carrying out the technic for staining intestinal protozoa in the study of fresh mount preparations. Not only are organisms more deeply stained with iodine but by eosin as well, even when employed in high dilutions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号