首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Immunoassay of acetylcholinesterase   总被引:1,自引:0,他引:1  
There is a twofold rationale for assaying acetylcholinesterase (AChE) (EC 3.1.1.7) immunologically, rather than by conventional activity-based methods: to measure the amount of enzyme protein in samples that may contain AChE of uncertain intrinsic activity; to bypass cumbersome procedures for determining the individual molecular forms of the enzyme. We have developed an immunodisplacement assay and a two-site immunoassay for AChE that are sensitive enough to measure the enzyme in samples of biological interest (assay thresholds of 10 and 0.1 ng, respectively). We have also used immunofluorescence with quantitative cell sorting as a means of analyzing AChE immunoreactivity in normal and abnormal human red blood cells. The introduction of form-specific immunoassays awaits the identification of suitably selective antibodies.  相似文献   

3.
Differences were observed in the extent of thermal inactivation of human butyrylcholinesterase (BuChE) and eel acetylcholinesterase (AChE). BuChE was more resistant to 57°C inactivation than was AChE. Thermal inactivation of BuChE was reversible and followed first-order kinetics. AChE thermal inactivation was irreversible and did not follow first-order kinetics. AChE was marginally protected from thermal inactivation by the nonspecific salts ammonium sulfate and sodium chloride and to a greater extent by the active site-specific salts choline chloride, sodium acetate, and acetylcholine iodide. This protection was accompanied by a loss of absorbance at 280 nm. This data supports the hypothesis that thermal inactivation of AChE occurs by conformational scrambling and that aromatic amino acid residue(s) are involved in this process.Recipient of a research fellowship from the UNCW graduate school.  相似文献   

4.
5.
Comparative assays were made in a spectrophotometer and a microcalorimeter for the reaction between acetylcholinesterase (EC 3.1.1.7) and acetylthiocholine. The rate of light absorbance change and the rate of heat flow were measured from similar and simultaneous reactions in spectrophotometer and microcalorimeter, respectively. At the enzyme activity levels studied, i.e., 0.05–0.15 I.U. in calorimetry and 1–4 I.U. in spectrophotometry, the reaction rates were linear and showed first-order kinetics. A highly significant positive correlation was seen between the two methods (r = 0.997). More importantly, spectrophotometric assay with acetylthiocholine (which utilized a secondary reaction with chromagen, dithiobisnitrobenzoic acid) stood in highly significant positive correlation with calorimetric assays (which did not require a chromagen) either with the same substrate (r = 0.976) or with acetylcholine (r = 0.900). It appears that microcalorimetry can be used in preference to spectrophotometry for enzyme kinetic studies to overcome the complexity of reaction mixture and interference problems and with the advantage of using natural substrates.  相似文献   

6.
Fluorescent probes of acetylcholinesterase   总被引:2,自引:0,他引:2  
G Mooser  H Schulman  D S Sigman 《Biochemistry》1972,11(9):1595-1602
  相似文献   

7.
Molecular properties of acetylcholinesterase   总被引:9,自引:0,他引:9  
  相似文献   

8.
Hysteresis of insect acetylcholinesterase   总被引:1,自引:0,他引:1  
Pre-steady-state catalytic properties of insect acetylcholinesterase (AChE, EC 3.1.1.7) were studied with the neutral substrate N-methylindoxylacetate. Kinetics of soluble Apis mellifera and Drosophila melanogaster AChE forms showed lags (v(i)=0) before reaching the steady-state. Results were interpreted in terms of slow equilibrium between two conformational states E and E' of insect AChE. Hysteresis of insect AChE has been pointed out for the first time. The hysteretic behaviour was found to depend on the NMIA concentration and the nature of the enzyme. The maximum induction times (tau(max)) to reach the steady-state were 800 and 1000s with soluble AChE from A. mellifera and D.melanogaster, respectively. The orders of magnitude of the tau(max) were high and similar to human AChE and BuChE.  相似文献   

9.
Summary A method is described allowing localization of acetylcholinesterase (AChE) by both light and electron microscopy. During the reaction lead thio-diacetyl is decomposed, and therefore precipitated as PbS in the presence of native-SH group produced by the hydrolysis of acetylthiocholine perchlorate. The reaction takes place at neutral pH, since improves the sensitivity of AChE localizations. Application of the method to parasympathetic neurons showed that AChE was mainly localized in the rough endoplasmic reticulum of the perikaryons. No reaction was visible in glial cells. AChE was also localized on the plasma membrane of parasympathetic neurons. In mouse embryo muscles AChE activity was seen to be high and was not yet restricted to the synaptic area. The well developed Schwann cells accompanying the neurites displayed constant AChE activity on their plasma membrane.Supported by a grant of INSERM C.R.L. N0 79-5-318-6  相似文献   

10.
Subunit heterogeneity of acetylcholinesterase   总被引:3,自引:0,他引:3  
Several different preparations of purified 11 S acetylcholinesterase have been examined for structural heterogeneity. While no contaminant protein was observed in any of the preparations, minor isozymic forms with catalytic activity were observed in addition to the major component both in polyacrylamide gel electrophoresis and in isoelectric focusing. Major differences in the relative composition of the disulfide-reduced polypeptides among the preparations were found by gel electrophoresis in sodium dodecyl sulfate. Several characteristics of these differences strongly suggest that they derive from a proteolytic fragmentation of a single subunit species. In particular, the apparent fragmentation in the crude enzyme solution is inhibited by benzethonium chloride, an inhibitor of proteolysis which also prevents the conversion of 18, 14, and 8 S acetylcholinesterase species to the 11 S form in fresh electric tissue extracts. No significant differences in the enzyme specific activity are observed among the preparations, an observation which indicates that fully active native enzyme molecules are composed of subunits which are heterogeneous with respect to discrete points of polypeptide cleavage.  相似文献   

11.
12.
13.
Isolation and characterization of acetylcholinesterase from Drosophila   总被引:9,自引:0,他引:9  
The purification and characterization of acetylcholinesterase from heads of the fruit fly Drosophila are described. Sequential extraction procedures indicated that approximately 40% of the activity was soluble and 60% membrane-bound and that virtually none (less than 4%) corresponded to collagen-tailed forms. The membrane-bound enzyme was extracted with Triton X-100 and purified over 4000-fold by affinity chromatography on acridinium resin. Hydrodynamic analysis by both sucrose gradient centrifugation and chromatography on Sepharose CL-4B revealed an Mr of 165,000 similar to that observed for dimeric (G2) forms of the enzyme in mammalian tissues. In contrast, the purified enzyme gave predominant bands of about 100 kDa prior to disulfied reduction and 55 kDa after reduction on polyacrylamide gel electrophoresis in sodium dodecyl sulfate, values that are significantly lower than those reported for purified G2 enzymes from other species. However, the presence of a faint band at 70 kDa which could be labeled by [3H]diisopropyl fluorophosphate prior to denaturation suggested that the 55-kDa band as well as a 16-kDa species arose from proteolysis. This was confirmed by reductive radiomethylation and amine analysis of the 70-, 55-, and 16-kDa bands. All three contained ethanolamine and glucosamine residues that are characteristic of a C-terminal glycolipid anchor in other G2 acetylcholinesterases. The catalytic properties of the enzyme were examined by titration with a fluorogenic reagent which revealed a turnover number for acetylthiocholine that was 6-fold lower than eel and 3-fold lower than human erythrocyte acetylcholinesterase. Furthermore, the Drosophila enzyme hydrolyzed butyrylthiocholine much more efficiently than these eel or human enzymes, an indication that the fly head enzyme has a substrate specificity intermediate between mammalian acetylcholinesterases and butyrylcholinesterases.  相似文献   

14.
Heparin and the solubilization of asymmetric acetylcholinesterase   总被引:1,自引:0,他引:1  
A Barat  E Escudero  G Ramírez 《FEBS letters》1986,195(1-2):209-214
Heparin solubilizes asymmetric acetylcholinesterase, from chick skeletal muscle and retina, as a 24 S complex which is quantitatively converted to conventional asymmetric molecular forms of the enzyme (A12 and A8, either class I or class II) upon exposure to high salt. The simultaneous presence of salt and heparin in the homogenization medium selectively prevents, however, the release of class II A-forms in both muscle and retina. Heparin may generally act by displacing native proteoglycans involved in the attachment of the enzyme tail to the extracellular matrix, or its neural equivalent, being in turn removed by salt to yield typical asymmetric enzyme forms. Heparin would also appear to displace some other molecules specifically involved in the EDTA-sensitive attachment of class II tailed forms, this effect being antagonized by salt.  相似文献   

15.
16.
17.
The effect of chemical modification on the acetylcholinesterase and the aryl acylamidase activities of purified acetylcholinesterase from electric eel and basal ganglia was investigated in the presence and absence of acetylcholine, the substrate of acetylcholinesterase, and 1,5-bis[4-(allyldimethylammonium)phenyl]pentan-3-one dibromide (BW284C51), a reversible competitive inhibitor of acetylcholinesterase. Trinitrobenzenesulfonic acid, pyridoxal phosphate, acetic anhydride, diethyl pyrocarbonate, and 2-hydroxy-5-nitrobenzyl bromide under specified conditions inactivated both acetylcholinesterase and aryl acylamidase in the absence of acetylcholine and BW284C51. Chemical modifications in the presence of acetylcholine and BW284C51 by all the above except diethyl pyrocarbonate selectively prevented the loss of acetylcholinesterase but not aryl acylamidase activity; modification by diethyl pyrocarbonate in the presence of acetylcholine and BW284C51 prevented the loss of both acetylcholinesterase and aryl acylamidase activities. Treatment with N-acetylimidazole resulted in the inactivation of acetylcholinesterase and the activation of aryl acylamidase. These changes in both the activities could be prevented by acetylcholine and BW284C51. Modification by phenylglyoxal, 2,4-pentanedione, or N-ethylmaleimide did not affect the enzyme activities. Indophenylacetate hydrolase activity followed a pattern similar to that of acetylcholinesterase in all the above modification studies. The results suggested essential lysine, tyrosine, tryptophan, and histidine residues for the active center of acetylcholinesterase and essential lysine, histidine, and tryptophan residues for the active center of aryl acylamidase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
19.
20.
The antibiotic anisomycin, an inhibitor of protein synthesis in eucaryotic cells, which blocks long-term memory in mice, is shown to interact with the cholinergic system by inhibiting reversibly the acetylcholinesterase. The inhibition is a competitive one, the inhibition constant Ki being 5.0 × 10?3 for human brain acetylcholinesterase and 1.7 × 10?3 for acetylcholinesterase of bovine erythrocytes. The anisomycin effect on acetylcholinesterase is compared with the puromycin and cycloheximide-inhibition of the enzyme. The significance of the cholinergic effect of anisomycin in addition to its inhibitory effect on protein synthesis for the interpretation of memory experiments is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号