首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unlike the deoxyribonucleic acid (DNA)-deficient minicells produced by F(-) parents, minicells produced by plasmid-containing strains contain significant amounts of plasmid DNA. We examined the ability of plasmid-containing minicells to synthesize ribonucleic acid (RNA) and protein. In vivo, minicells produced by F(-) parents are unable to incorporate radioactive precursors into acid-insoluble RNA or protein, whereas minicells produced by F', R(+), or Col(+) parents are capable of such synthesis. Using a variety of approaches, including polyacrylamide gel analysis of the RNA species produced and electron microscope autoradiography, we demonstrated that the synthesis observed in minicell preparations is a property of the plasmid-containing minicells and not a result of the few cells (approximately 1 per 10(6) minicells) contaminating the preparations. That the observed synthesis is of biological importance is suggested by the ability of plasmid-containing minicells to yield viable phage upon infection with T4.  相似文献   

2.
R64-11(+) donor cells that are thermosensitive for vegetative DNA replication will synthesize DNA at the restrictive temperature when recipient minicells are present. This is conjugal DNA replication because it is R64-11 DNA that is being synthesized and there is no DNA synthesis if minicells that cannot be recipients of R64-11 DNA are used. The plasmid DNA present in the donor cells before mating is transferred to recipient minicells within the first 20 min of mating, but additional copies of plasmid DNA synthesized during the mating continue to be transferred for at least 90 min. However, the transfer of R64-11 DNA to minicells is not continuous because the plasmid DNA in minicells is the size of one R64-11 molecule or smaller, and there are delays between the rounds of plasmid transfer. DNA is synthesized in minicells during conjugation, but this DNA has a molecular weight much smaller than that of R64-11. Thus, recipient minicells are defective and are not able to complete the synthesis of a DNA strand complementary to the single-stranded R64-11 DNA received from the donor cell.  相似文献   

3.
Certain genetic, structural, and biochemical properties of a class 2 R-factor system consisting of the conjugally proficient transfer plasmid I and the naturally occurring non-conjugative tetracycline (Tc) resistance plasmid 219 are reported. I and 219 exist as separate plasmid deoxyribonucleic acid (DNA) species in both Escherichia coli and Salmonella panama, having molecular weights of 42 x 10(6) and 5.8 x 10(6), respectively. The buoyant densities of I and 219 are 1.702 and 1.710 g/cm(3), respectively, in neutral cesium chloride. Although the Tc resistance plasmid is not transmissible in a normal conjugal mating, it is mobilized in a three-component mating by plasmid I and by certain other conjugative plasmids of the fi(+) or fi(-) phenotype. Mobilization does not appear to involve intermolecular recombination between plasmids, and no covalent linkage of resistance markers and fertility functions is observed. Transformation of CaCl(2)-treated E. coli by plasmid DNA is shown to be a useful procedure for studying the biological properties of different plasmid molecular species that have been fractionated in vitro, and for selectively inserting non-self-transmissible plasmids into specific bacterial strains. The effects of tetracycline on the rate of protein synthesis carried out by plasmid 219 were studied by using isolated E. coli minicells into which this plasmid had segregated. Consistent with the results of earlier investigations showing the inducibility of plasmid-mediated Tc resistance in E. coli, the antibiotic was observed to stimulate protein synthesis in minicells carrying the plasmid 219 and totally inhibit (3)H-leucine incorporation by minicells lacking the Tc resistance marker. Five discrete polypeptide species were synthesized by minicells carrying plasmid 219; exposure of minicells or parent bacteria to Tc resulted in specific and reproducible changes in polypeptide synthesis patterns.  相似文献   

4.
The deoxyribonucleic acid (DNA) of resistance (R) factor 222 carried by Escherichia coli strain P678-54 was found in the normally chromosomeless progeny (minicells) of that strain. The entry of the R222 DNA into minicells appears to be via segregation at the time of their formation from normal cells. The R222 DNA can replicate in minicells although the extent of its replication appears to be limited. An analysis of the R222 DNA structure indicates that it exists in minicells as double-stranded linear, open circular, and twisted circular monomers (molecular weight, about 6.2 x 10(7) daltons). The monomers visualized by electron microscopy are 31.0 +/- 0.5 mum in length. An examination of the effect of acridine orange on the replication of R222 and colicin E1 DNA indicates the dye intereferes with plasmid DNA replication.  相似文献   

5.
The similarity of sex pili mediated by F factors and R(fi(+)) factors and the ability of R(fi(+)) factors to control by repression the functioning of pilus genes encoded by the F factor suggested that F factors and R(fi(+)) factors are closely related. Further comparisons of the episomal properties of F factors and R(fi(+)) factors, however, indicated many differences. F factors contain information for a restriction system for phages phiII and T7. Cells containing R factors are sensitive to these phages. Furthermore, R(fi(+)) factors do not repress the F factor phiII restriction system in cells containing both an R(fi(+)) factor and an F factor. R factors and F factors are heteroimmune episomes. In addition, an R(fi(+)) factor in cells containing both an R factor and an F factor does not fully repress the expression of F-factor immunity to an incoming second F factor. R-factor and F-factor replication systems are not identical. Wild-type F-factor replication genes will complement the mutant F(ts114)lac(+) replication genes in cells containing two F factors. The F(ts114)lac(+) episome is retained when these cells are grown at 42 C; however, cells containing an R(fi(+)) factor and F(ts114)lac(+) lose the F(ts114)lac(+) when grown at 42 C, at the same rate as cells containing only the F(ts114)lac(+). The replication system of the R(fi(+)) factor will not complement the mutant F(ts114)lac(+) replication system.  相似文献   

6.
Conjugal replication of R64-11 deoxyribonucleic acid (DNA) and the concomitant transfer of R64-11 DNA to DNA-deficient minicells are dependent upon processes that are inhibited by rifampin and chloramphenicol. The rifampin-sensitive product is not present in vegetatively growing cells and is needed to initiate both conjugal DNA replication in donor cells and DNA transfer to recipient minicells. If the rifampin-sensitive product is a ribonucleic acid (RNA) molecule (rather than RNA polymerase itself), our data indicate that this RNA species required for initiation of conjugal activity does not need to be translated into a protein product. The chloramphenicol-sensitive product(s) is present in vegetatively growing cells in sufficient quantity to permit most donor cells to carry out one round of plasmid conjugal replication and transfer. The initiation of second and subsequent rounds of conjugal replication and transfer are dependent on the synthesis of both the rifampin-sensitive and chloramphenicol-sensitive products. Our results demonstrate a correspondence between the amount of conjugal DNA replication in the donor and the amount of DNA transferred to recipient minicells under all conditions, and therefore suggest but do not prove that plasmid transfer is dependent on conjugal DNA replication. The results also add additional proof that R64-11 transfer to minicells is discontinuous. All of these results are discussed in regard to further refinements of old models for the mechanism of conjugal transfer as well as a more radical departure from current dogma.  相似文献   

7.
It is demonstrated that after infection of the appropriate minicell-producing strain of Escherichia coli with the filamentous bacteriophage M13, its replicative form DNA is segregated into minicells. Consequently these minicells have acquired the capability to direct the synthesis of phage-specific RNA and protein. Comparision of the electrophoretic mobilities of phage-specific RNA species made in vitro with those made in M13 replicative form DNA harbouring minicells, have indicated that almost all in vitro synthesized G-start RNAs have an equivalent among the in vivo synthesized RNA products. Furthermore it could be demonstrated that in M13 replicative form DNA harbouring minicells the phage-specific proteins encoded by genes III, IV, V and VIII are made. In addition the synthesis of a phage-specific polypeptide (molecular weight approx. 3000) co-migrating with the recently discovered capsid protein (designated C-protein) could be demonstrated. The meaning of these results for the resolution of the regulatory mechanisms operative during the life cycle of this phage will be discussed.  相似文献   

8.
Molecular Studies on Entry Exclusion in Escherichia coli Minicells   总被引:11,自引:9,他引:2       下载免费PDF全文
Minicells produced by abnormal cell division in a strain of Escherichia coli (K-12) have been employed here to investigate the phenomenon of "entry exclusion." When purified minicells from strains containing F' or R factors, or both, are mated with radioactive thymidine-labeled Hfr or R(+) donors, the recipient minicells can be conveniently separated from normal-sized donors following mating, and the products of conjugation can be analyzed in the absence of donors and of further growth of the recipients. Transmissible plasmids or episomes are transferred less efficiently to purified minicells derived from strains carrying similar or related elements than to strains without them. Measurement of deoxyribonucleic acid (DNA) degradation and determination of weight-average molecular weights following transfer indicate that degradation of transferred DNA or transfer of smaller pieces cannot account for the comparative reduction in transfer to entry-excluding recipients. Therefore, we conclude that entry exclusion operates to prevent the physical entry of DNA into recipients expressing the exclusion phenotype. The R-produced repressor (product of the drd(+) gene), which represses fertility (i.e., ability to act as donor), reduces exclusion mediated by R or F factor, or both, in matings between strains carrying homologous elements. Furthermore, the data suggest that the presence of the F pilus or F-like R pilus on recipient cells ensures maximum expression of the exclusion phenotype but is not essential for its expression. In contrast to previous suggestions, we found no evidence for a reduction of entry exclusion attributable to the DNA temperature-sensitive chromosomal mutation dnaB(TS).  相似文献   

9.
Superinfection immunity is found in the conjugal transfer of R factors between two fi(+) R factors and between two fi(-) R factors (fi = fertility inhibition), as we reported previously. In contrast, no reduction in the frequencies of transduction of an fi(+) R factor 222 was caused by the presence of fi(+) R factors in the recipients in transduction systems with phage P1kc in Escherichia coli K-12 and with phage P22 in Salmonella typhimurium LT-2. The absence of superinfection immunity in transduction may be due to the difference in the route of entry of the R factor. The frequencies of transduction of an fi(+) R factor were reduced, although slightly, by the presence of fi(-) R factors in the recipients. This reduction is probably due to host-controlled restriction of the entering fi(+) R factor by the fi(-) R factors in the recipients, since transduction of an fi(+) R factor by the transducing phage propagated on the strain carrying both fi(+) and fi(-) R factors was not reduced by the presence of homologous fi(-) R factors in the recipients. The fi(+) R factor 222, when transduced to the recipient strains carrying other R factors, recombined genetically at high frequencies with these resident R factors, regardless of their fi type.  相似文献   

10.
During the conjugal transfer of the R64-11 plasmid at 42 C from donor cells thermosensitive for vegetative deoxyribonucleic acid (DNA) synthesis to recipient minicells, the plasmids are conjugally replicated in the donor cells. This conjugal replication is inhibited by nalidixic acid, and the degree of inhibition is comparable to the reduction in the amount of plasmid DNA transferred to the recipient minicells in the presence of the drug. In addition, the size of DNA transferred to the minicells and the fraction of conjugally replicated DNA in the donor cells that can be isolated as closed-circular plasmid DNA under alkaline conditions are both reduced by nalidixic acid. When the drug is added to a mating that is underway, the rate of conjugal replication is immediately reduced. This change is accompanied by a reduction in the amount of conjugally replicated DNA in the donor cells that can be isolated as closed-circular plasmid DNA. Furthermore, conjugally replicated plasmid DNA that is not associated with the donor cell membrane becomes membrane bound after the addition of nalidixic acid.  相似文献   

11.
Covert fi− R Factors in fi− R+ Strains of Bacteria   总被引:13,自引:12,他引:1       下载免费PDF全文
The presence of an fi(-) sex factor can be detected by propagation of the I-specific phage If1. By use of this method of detection, a high proportion of strains with fi(+) R factors were shown also to carry an fi(-) factor which was frequently a second R factor. In some doubly R(+) strains, the fi(+) and the fi(-) factor were observed to be transferred independently at conjugation.  相似文献   

12.
Chromosomeless “minicells” are formed by misplaced cell fissions near the polar extremities of an Escherichia coli K-12 mutant strain. Resistance (R)-factor deoxyribonucleic acid (DNA) can be introduced into minicells by segregation from an R+ (R64-11) derivative of the original mutant. We have assessed the ability of R+ minicells to correct defects produced in their plasmid DNA by ultraviolet (UV) and gamma radiations. Minicells harboring plasmid DNA, in comparison with their repair-proficient minicell-producing parents, possess (i) an equal competence to rejoin single-strand breaks induced in DNA by gamma rays, (ii) a reduced capacity for the photoenzymatic repair of UV-induced pyrimidine dimers, and (iii) a total inability to excise dimers, apparently owing to a deficiency in UV-specific endonuclease activity responsible for mediating the initial incision step in excision repair. Assuming that the DNA repair properties of R+ minicells reflect the concentration of repair enzymes located in the plasmid-containing polar caps of entire cells, these findings suggest that: (i) the enzymes responsible for rejoining single-strand breaks are distributed throughout the cell; (ii) photoreactivating enzyme molecules tend to be concentrated near bacterial DNA and to a lesser extent near plasmid DNA; and (iii) UV-specific endonuclease molecules are primarily confined to the central region of the E. coli cell and, thus, seldom segregate with R-factor DNA into minicells.  相似文献   

13.
Analysis of the protein synthesized by Escherichia coli minicells containing R factors demonstrated a variety of low- and high-molecular-weight polypeptides in sodium dodecyl sulfate (SDS)-polyacrylamide gels. Only half of this protein was released into a soluble fraction on lysis of these minicells. The other half remained associated with the minicell envelope. The efficiency of precursor incorporation into protein and the kinds of proteins synthesized changed with the age of the minicells at the time of harvest. About 1 to 2% of the soluble R factor-coded protein bound to calf thymus, E. coli, or R factor DNA-cellulose. Although most of these proteins were excluded from Sephadex G-100 columns, they migrated chiefly as low-molecular-weight-polypeptides (13,000 to 15,000) in SDS-polyacrylamide gels. Additional DNA-binding proteins that appeared to be higher-molecular-weight peptides were noted in extracts from younger minicells. At least one protein, identified as an SDS band, appeared to bind selectively to R factor DNA-cellulose. Minicells with R factors also contained DNA-binding proteins of cell origin, including the core RNA polymerase. No such binding proteins were found in R(-) minicells. These studies suggest that: (i) R factors code for proteins that may be involved in their own DNA metabolism; (ii) R factor DNA-binding proteins may be associated with larger host cell DNA-binding proteins or subunits of larger R factor proteins; and (iii) the age of the minicell influences the extent of protein synthesis and the kinds of proteins synthesized by R factors in minicells.  相似文献   

14.
Genetic stability of R factors was studied in Salmonella typhimurium LT-2 and Escherichia coli K-12. It was found that fi(+) R [or R(f)] factors were unstable in LT-2, losing their drug-resistance markers at high frequencies, and were stable in K-12; fi(-) R [or R(i)] factors were stable in both hosts. Both fi(+) and fi(-) R factors were genetically stable also in recombination-deficient mutants of K-12. An fi(+) R factor, which was unstable in S. typhimurium LT-2 wild type, was relatively stable in a recombination-deficient mutant of LT-2. In the spontaneous loss of the drug-resistance markers of fi(+) R factors in LT-2, the markers for sulfanilamide, streptomycin, and chloramphenicol resistance were lost together at high frequencies and the tetracycline marker was retained stably. The remaining drug-resistance markers of the spontaneous segregants of LT-2 were transmissible to K-12 by mixed cultivation, indicating that they were still in the form of R factors.  相似文献   

15.
It has previously been shown that the cloacinogenic factor Clo DF13 (Clo DF13) segregates into minicells of strain Escherichia coli P678-54 that harbors Clo DF13 and that this Clo DF13 factor is the only deoxyribonucleic acid (DNA) present in these otherwise chromosomeless minicells. The study reported here shows that minicells prepared from P678-54(Clo DF13) are able to incorporate radioactive precursors into ribonucleic acid (RNA) and protein. The RNA synthesized in these purified minicells is Clo DF13 specific, as shown by RNA-DNA hybridization experiments. The results indicate that all the de novo synthesized gene products in Clo DF13 minicells are Clo DF13 specific. Polyacrylamide gel electrophoretic patterns show that in these minicells at least three polypeptides (molecular weight about 70,000, 20,000, and 11,000) and one major species of messenger RNA (mRNA) (S value about 21.3) are synthesized. To investigate the factor in its induced state, we isolated a Clo DF13 mutant with an enhanced level of cloacin production. Minicells harboring this Clo DF13 mutant produce five additional polypeptides (molecular weight about 58,000, 44,000, 28,000, 16,000, and 14,000). Three additional mRNA species (S value about 19.5, 14, and 12) could be distinguished. The total molecular weight of the eight polypeptides corresponds to 85% of the total coding capacity of the mRNAs (303,000). The total molecular weight of the four mRNAs is 2.55 x 10(6), which covers 85% of the Clo DF13 DNA (molecular weight 6 x 10(6)).  相似文献   

16.
Watanabe, Tsutomu (Keio University, Tokyo, Japan), and Chizuko Ogata. Episome-mediated transfer of drug resistance in Enterobacteriaceae. IX. Recombination of an R factor with F. J. Bacteriol. 91:43-50. 1966.-R factors can be transduced in Salmonella typhimurium with phage P-22, and a majority of the drug-resistant transductants are unable to transfer their drug resistance by cell-to-cell contact, as we have previously reported. Several exceptional types of transductants of S. typhimurium, with the markers of resistance to sulfonamide, streptomycin, and chloramphenicol, were recently obtained by transduction with phage P-22 of a four-drug-resistance R factor carrying the markers of resistance to sulfonamide, streptomycin, chloramphenicol, and tetracycline. They were exceptional in that they had low conjugal transferability of their drug resistance. When one of these exceptional transductants (38R) was transferred to an F(+) strain of Escherichia coli K-12, 38R acquired high transferability in its further transfer. This high transferability was found to be due to the recombination of 38R with F. Transductant 38R was of the fi(+) (fi = fertility inhibition) type, and did not show superinfection immunity against fi(+) and fi(-) R factors. The recombinant 38R.F was genetically very stable and resistant to elimination with acridines. It did not show superinfection immunity against fi(+) and fi(-) R factors, but did show superinfection immunity against F. Further, 38R.F did not restrict a female-specific phage (W-31), unlike wild-type F. F(-) and R(-) segregants were isolated from this recombinant 38R.F, and these segregants exhibited genetic characteristics different from the original R, its transductant 38R, and wild-type F.  相似文献   

17.
Minicells of Bacillus subtilis   总被引:50,自引:28,他引:22  
After nitrosoguanidine (N-methyl-N'-nitro-N-nitrosoguanidine) mutagenesis, two Bacillus subtilis mutants (div IV-A1 and div IV-B1) were isolated that are defective in the location of division site along cell length. Both mutations were transferred into strain CU403 by transformation, and their properties were studied in the CU403 genetic background. Location of divisions in close proximity to cell pole regions in both mutants results in minicell production. Purified minicells contain a ratio of ribonucleic acid to protein comparable to that found in the parent cells. Autoradiographs of (3)H-thymine incorporation into deoxyribonucleic acid (DNA), thymine-2-(14)C incorporation into DNA, electron micrographs, and chemical analyses for DNA all fail to demonstrate DNA in the minicells. Minicells produced by both mutants are highly motile, an indication of functional energy metabolism. Electron micrographs reveal that minicells are produced by a structurally normal division mechanism and that minicells contain a normal cell surface. The div IV-A1 mutation has been mapped by PBS1 transduction linked to ura. The div IV-B1 mutation is closely linked to pheA by both PBS1 transduction and by co-transformation.  相似文献   

18.
Unowsky, Joel (Northwestern University Medical School, Chicago, Ill.), and Martin Rachmeler. Mechanisms of antibiotic resistance determined by resistance-transfer factors. J. Bacteriol. 92:358-365. 1966.-This study was concerned with the mechanism of expression of drug resistance carried by resistance-transfer (R) factors of two types: fi(-) (negative fertility inhibition) and fi(+) (positive fertility inhibition). The levels of drug resistance determined by R factors used in this study were similar to those reported by other investigators. A new finding was that Escherichia coli carrying the fi(-) episome was resistant to 150 to 200 mug/ml of streptomycin. The growth kinetics of R factor-containing cells were similar in the presence or absence of streptomycin, chloramphenicol, and tetracycline, but a period of adaptation was necessary before cells began exponential growth in the presence of tetracycline. By use of radioactive antibiotics, it was shown that cells containing the fi(-) episome were impermeable to tetracycline and streptomycin, whereas cells containing the fi(+) episome were impermeable only to chloramphenicol. Cell-free extracts from fi(+) and fi(-) cells were sensitive to the antibiotics tested in the polyuridylic acid-stimulated incorporation of phenylalanine into protein.  相似文献   

19.
The infection of different Hfr strains of Escherichia coli bearing derepressed R factors of the fi(+) or fi(-) type can result in the loss of the R factor and the conversion of the infected cells to the R(-) state. This extends earlier observations on the elimination of F' factors by bacteriophage M13 infection. Variability in the efficiency of this conversion can arise because of genetic factors independent of the R factor being eliminated. A fraction of the infected but unconverted R(+) cells were M13 carrier strains. The carrier state had an intracellular basis, and single R(+) cells could maintain the carrier state.  相似文献   

20.
The effects of two deoxyribonucleic acid (DNA) gyrase inhibitors, nalidixic acid and novobiocin, on the gene expression of plasmid pBR322 in Escherichia coli minicells were studied. Quantitative estimates of the synthesis of pBR322-coded polypeptides in novobiocin-treated minicells showed that the synthesis of a polypeptide of molecular weight of 34,000 (the tetracycline resistance protein) was reduced to 11 to 20% of control levels, whereas the amount of a polypeptide of 30,500 (the beta-lactamase precursor) was increased to as much as 200%. Nalidixic acid affected the synthesis of the tetracycline resistance protein similarly to novobiocin, although to a lesser extent. The effects of nalidixic acid were not observed in a nalidixic-resistant mutant; those induced by novobiocin were only partially suppressed in a novobiocin-resistant mutant. The synthesis of one of the inducible tetracycline-resistant proteins (34,000) coded by plasmid pSC101 was also reduced in nalidixic acid- and novobiocin-treated minicells. These results suggest that the gyrase inhibitors modified the interaction of ribonucleic acid polymerase with some promoters, either by decreasing the supercoiling density of plasmid DNA or by altering the association constant of the gyrase to specific DNA sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号