首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using mitochondrial 12S and 16S rRNA sequences, we investigated phylogenetic relationships among populations of the endemic Japanese salamander Hynobius naevius. Monophyly of this species was recovered only in the maximum parsimony tree and was unresolved in maximum likelihood and Bayesian trees. Instead the following four haplotype clades consistently emerged clearly: Clade 1 from northwestern Kyushu, Clade 2 from Chugoku and northeastern Kyushu, Clade 3 from western Shikoku and Kyushu, and Clade 4 from Chubu-Kinki and central-eastern Shikoku. Of these, Clades 1 and 2, and Clades 3 and 4, respectively, correspond to Groups A and B previously recognized from the analyses of allozyme data in this species, but monophyly of these groups was not strongly supported. Unlike the previous results, the western and eastern samples from Shikoku did not form a clade, and were grouped with Kyushu-B in Clade 3 and Chubu-Kinki in Clade 4, respectively. The reason for this conflict between mtDNA and allozyme results is unknown, but might be related to retention of ancestral mtDNA polymorphism in Shikoku populations. Nearly simultaneous divergence of as many as four lineages in wide-ranging H. naevius is inferred for the late Miocene-Pliocene history of this taxon.  相似文献   

2.
The All Birds Barcoding Initiative aims to assemble a DNA barcode database for all bird species, but the 648-bp 'barcoding' region of cytochrome c oxidase subunit I (COI) can be difficult to amplify in Southeast Asian perching birds (Aves: Passeriformes). Using COI sequences from complete mitochondrial genomes, we designed a primer pair that more reliably amplifies and sequences the COI barcoding region of Southeast Asian passerine birds. The 655-bp region amplified with these primers overlaps the COI region amplified with other barcoding primer pairs, enabling direct comparison of sequences with previously published DNA barcodes.  相似文献   

3.
DNA sequence data enable not only the inference of phylogenetic relationships but also provide an efficient method for species-level identifications under the terms DNA barcoding or DNA taxonomy. In this study, we have sequenced partial sequences of mitochondrial COI and 16S rRNA genes from 63 specimens of 8 species of Pectinidae to assess whether DNA barcodes can efficiently distinguish these species. Sequences from homologous regions of four other species of this family were gathered from GenBank. Comparisons of within and between species levels of sequence divergence showed that genetic variation between species exceeds variation within species. When using neighbour-joining clustering based on COI and 16S genes, all species fell into reciprocally monophyletic clades with high bootstrap values. These evidenced that these scallop species can be efficiently identified by DNA barcoding. Evolutionary relationships of Pectinidae were also examined using the two mitochondrial genes. The results are almost consistent with Waller’s classification, which was proposed on the basis of shell microstructure and the morphological characteristics of juveniles.  相似文献   

4.
We conducted molecular phylogenetic analyses to confirm taxonomic relationships and to delimit distributional ranges of Siberian salamanders, Salamandrella keyserlingii and Salamandrella schrenckii, and to elucidate the origin of the isolated population of this species complex on Hokkaido, Japan. Phylogenetic trees constructed by MP, NJ, ML, and Bayesian methods, using complete sequences of mitochondrial cytochrome b genes, all indicated monophyly of Salamandrella and of each of the two species. Identical relationships were found on UPGMA, NJ, and CONTML trees derived from electrophoretic analysis of variation in 18 inferred allozyme loci. Populations from Hokkaido and northeastern China proved to be S. keyserlingii, while populations from Khabarovsk and Lazovsky are S. schrenckii. Genetic differentiations of S. keyserlingii within Sakhalin, and between Sakhalin and Hokkaido, are substantial. The Hokkaido population is hypothesized to have been isolated on the island since early Pleistocene, much earlier than isolation of sympatric anuran populations from their Sakhalin relatives. In contrast, the continental populations of S. keyserlingii are only slightly differentiated from some Sakhalin populations, and are thought to have expanded their ranges in the late Pleistocene.  相似文献   

5.
隐种A和隐种B是桉树枝瘿姬小蜂Leptocybe invasa两种重要的全球入侵隐种,对多国林业生产造成了严重危害。由于桉树枝瘿姬小蜂体型微小,且无法从形态上区分隐种类型,给该害虫的防治造成困难。本研究基于线粒体DNA细胞色素C氧化酶亚基I(mtDNA COI)基因序列的种特异性(species-specific COI,SS-COI)PCR方法,研究桉树枝瘿姬小蜂隐种快速分子检测技术。基于隐种A、B的COI序列分别设计特异性SS-COI引物各1对(AF/AR和BF/BR)。使用这两对引物扩增同一桉树枝瘿姬小蜂样品DNA,即可有效进行隐种鉴定,同时两对引物也能互相验证鉴定结果。引物鉴定灵敏性检测结果显示,AF/AR与BF/BR均具有较高的鉴定灵敏性,其对DNA的有效鉴定浓度阈值分别为11.42 pg/μL和28.32 pg/μL。本研究开发的桉树枝瘿姬小蜂隐种A、B的快速鉴定方法解决了桉树枝瘿姬小蜂入侵地区隐种鉴别的难题,极大缩短鉴定时间、降低鉴定费用,为进一步探究桉树枝瘿姬小蜂隐种A、B的生物学差异以及它们对不同抗性品种桉树的适应能力提供技术参考。  相似文献   

6.
《Journal of Asia》2020,23(2):540-545
With about 5000 known species, the Vespidae is a large family belongs to order Hymenoptera. The genus Vespa with 22 species is one of the four genera of the subfamily Vespinae. In Korea, 10 species and subspecies are recognized. Because of their social behavior, their treat to human health and their impact in apiculture, the reliable and sometimes automated identification of these insects to species level are important. To test the efficacy of DNA barcoding method for identification of species of the genus Vespa in Korea, 30 samples of eight Korean species of genus Vespa were collected and mitochondrial DNAs of 658 bp fragment cytochrome oxidase subunit 1 (CO1) region were sequenced. A Bayesian Inference based on COI gene of the Korean Vespa species was constructed. The phylogenetic tree shoed that identification of all specimens is possible based on COI gene and we found strong relation between the sequences of the collected species from different localities in South Korea which clustered together with 100% support with sequences of the same species in GenBank. The results demonstrate that DNA barcoding is a useful technique for rapid and accurate species recognition in Korean Vespa species. The DNA barcode part of COI for V. binghami is provided for the first time that can help for identification of this species through DNA barcoding. Also, the genetic diversity among Korean Vespa velutina was zero suggests that the invasion might have occurred in a single event with small number of founders.  相似文献   

7.
We used Cytochrome Oxidase Subunit 1 (COI) to assess the phylogenetic relationships and taxonomy of Nebela sensu stricto and similar taxa (Nebela group, Arcellinida) in order to clarify the taxonomic validity of morphological characters. The COI data not only successfully separated all studied morphospecies but also revealed the existence of several potential cryptic species. The taxonomic implications of the results are: (1) Genus Nebela is paraphyletic and will need to be split into at least two monophyletic assemblages when taxon sampling is further expanded. (2) Genus Quadrulella, one of the few arcellinid genera building its shell from self-secreted siliceous elements, and the mixotrophic Hyalosphenia papilio branch within the Nebela group in agreement with the general morphology of their shell and the presence of an organic rim around the aperture (synapomorphy for Hyalospheniidae). We thus synonymise Hyalospheniidae and Nebelidae. Hyalospheniidae takes precedence and now includes Hyalosphenia, Quadrulella (previously in the Lesquereusiidae) and all Nebelidae with the exception of Argynnia and Physochila. Leptochlamys is Arcellinida incertae sedis. We describe a new genus Padaungiella Lara et Todorov and a new species Nebela meisterfeldi n. sp. Heger et Mitchell and revise the taxonomic position (and rank) of several taxa. These results show that the traditional morphology-based taxonomy underestimates the diversity within the Nebela group, and that phylogenetic relationships are best inferred from shell shape rather than from the material used to build the shell.  相似文献   

8.
拟小鲵属(有尾目:小鲵科)一新种--水城拟小鲵   总被引:5,自引:0,他引:5  
田应洲  李松  谷晓明 《动物学报》2006,52(3):522-527
在比较和研究拟小鲵属(Pseudohynobius)已知二物种后,确定贵州省水城县石龙乡产拟小鲵为一新种,即水城拟小鲵(PseudohynobiusshuichengensisTian,LietGusp.nov)。新种与黄斑拟小鲵(P.flavomaculatus)的犁骨齿列形状相似;但新种体尾及四肢背面紫褐色,无黄色斑块;四肢长,前后肢贴体相向时,掌、部前半重叠;而黄斑拟小鲵体尾及四肢背面紫褐色,有土黄色斑块;四肢甚短,前后肢贴体相向时,指、趾仅相遇或略重叠。秦巴拟小鲵(P.tsinpaensis)背面棕褐色,体尾及四肢背面有不规则云状斑;四肢较短,前后肢贴体相向时,指、趾末端仅相遇。本文统计并记述了新种的外形、头骨特征、生物学资料。  相似文献   

9.
There is growing interest in broad‐scale biodiversity assessments that can serve as benchmarks for identifying ecological change. Genetic tools have been used for such assessments for decades, but spatial sampling considerations have largely been ignored. Here, we demonstrate how intensive sampling efforts across a large geographical scale can influence identification of taxonomic units. We used sequences of mtDNA cytochrome c oxidase subunit 1 and cytochrome b, analysed with maximum parsimony networks, maximum‐likelihood trees and genetic distance thresholds, as indicators of biodiversity and species identity among the taxonomically challenging fishes of the genus Cottus in the northern Rocky Mountains, USA. Analyses of concatenated sequences from fish collected in all major watersheds of this area revealed eight groups with species‐level differences that were also geographically circumscribed. Only two of these groups, however, were assigned to recognized species, and these two assignments resulted in intraspecific genetic variation (>2.0%) regarded as atypical for individual species. An incomplete inventory of individuals from throughout the geographical ranges of many species represented in public databases, as well as sample misidentification and a poorly developed taxonomy, may have hampered species assignment and discovery. We suspect that genetic assessments based on spatially robust sampling designs will reveal previously unrecognized biodiversity in many other taxa.  相似文献   

10.
Salminus is a genus composed of four species of migratory fishes and top predators. Although this group has great economic and ecological importance, the species level diversity of Salminus is not yet completely clarified. Our goal was to detect if this taxonomic problem is the consequence of lineage divergence within species, and, if so, whether these divergences are sufficient to flag potentially undescribed taxa. We employed the standard DNA barcoding analyses and a generalized mixed Yule-coalescent model (GMYC) using one mitochondrial (COI) marker and Bayesian Inference (BI) reconstruction for one nuclear (RAG2) marker for all currently recognized species of Salminus, sampled across different hydrographic basins. Eight MOTUs (Molecular Operational Taxonomic Units) were determined by distance and model-based analyses, and recovered with BI analyses for COI. Only Salminus affinis and Salminus franciscanus formed monophyletic haplogroups. Salminus brasiliensis and Salminus hilarii had two and four distinct mitochondrial lineages, respectively, and higher intraspecific K2P distances than the adopted optimum threshold. The RAG2 gene tree supported two lineages of S. hilarii (S. hilarii Amazon and S. hilarii Araguaia), while the other mitochondrial lineages of S. hilarii and S. brasiliensis were not supported. All lineages of both species, corresponded to morphological variation described in previous studies. We suggest, based on the DNA barcoding analysis, a new taxonomic scenario and conservation polices for Salminus in the Brazilian territory.  相似文献   

11.
Non‐biting midges (Diptera: Chironomidae) adapt to species‐specific environmental conditions and hence are promising bioindicators for aquatic and ecotoxicological monitoring. Although their utility for these purposes was historically limited by difficulties in their morphological identification, DNA barcoding offers a possible solution. Here, eight Japanese species of the genus Chironomus, which is characterized by its worldwide distribution and abundance among Chironomidae, were subjected to DNA barcoding using cytochromec oxidase subunit I (COI). To examine whether this DNA barcode is a useful indicator for Japanese species of Chironomus, we calculated genetic distances within and between the COI sequences of Chironomus species both from this study and worldwide and constructed phylogenetic trees. Based on 415 bp COI sequences and the Kimura two‐parameter model, the average genetic distances within 37 species and between 72 species were 2.6% and 17.2%, respectively. Although the ranges of genetic distances within and between species overlapped from 0.8% to 17.3%, 99.7% of average genetic distances between species were >3.0%. Some of this overlap is attributable to distances within species that were “too large” as well as those between species that were “too small”. Of eight Japanese species examined, two showed genetic distances between species that were below a 3.0% threshold, and four had distances within species that were greater than 3.0%. These results suggest a possible reclassification of these species and the need for further sampling to unveil biogeographic variations among different countries and regions.  相似文献   

12.
We investigated the usefulness of mitochondrial cytochrome c oxidase (COI) DNA barcoding of the genus Bradysia for the detection of immature stages and cryptic species complex. Although the larvae of some species in this genus are agricultural pests, immature stages are rarely identified due to the lack of key morphological characteristics. We constructed partial sequences of the COI gene for 25 species of Bradysia as a first step towards a DNA barcode. Using these data, Bradysia impatiens, B. procera and Bperaffinis were identified from larval specimens collected, respectively, from paprika, ginseng and oak sawdust beds used for cultivating shiitake. Our findings reveal a complex of three species within the Btilicola group. These species were all identified as important pest Bocellaris based on the morphology of male genital structures; however, the interspecific genetic divergence of the COI region was significantly greater (16.1–19.4%) than the intraspecific variation in each species. Therefore, Bocellaris may consist of at least three species. The results demonstrate that COI DNA barcodes are useful for Bradysia species identification.  相似文献   

13.
The abundant Sundaland forest frog, Rana chalconota, has long been considered a single widespread species, although some authors have recommended its division into regional subspecies. The discovery of co‐occurring pairs of morphologically distinct populations in three widely separated parts of the range led to a morphological and molecular analysis of populations from all parts of the known range. The results suggest that R. chalconota consists of at least seven species from Thailand through Borneo and Java. Existing names are applied to three of these species, R. chalconota (Schlegel), R. raniceps (Peters) and R. labialis Boulenger. We describe four others as new species and suggest the existence of one or two additional, unnamed species. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 155 , 123–147.  相似文献   

14.
中国小鲵科(两栖纲:有尾目)研究现状与资源保护   总被引:1,自引:0,他引:1  
杨莉  龚大洁  牟迈 《生态学杂志》2008,27(1):111-116
小鲵科(Hynobiidae)隶属于两栖纲、有尾目,是现存陆生脊椎动物中最低等的一个类群,它们在科学研究、经济应用和文化娱乐等方面都具有重要的价值.本文从物种的分类、繁殖生态学、精子形态与结构等方面总结了中国小鲵科的研究概况,分析了导致其种群下降的原因,在此基础上提出了一些保护对策,以期对中国小鲵科物种的资源利用以及相关部门制定物种保护政策提供一定的参考.  相似文献   

15.
Recent research has shown the usefulness of the Folmer region of the cytochrome oxidase I (COI) as a genetic barcode to assist in species delimitation of echinoderms. However, amplification of COI is often challenging in echinoderms (low success or pseudogenes). We present a method that allows the design of phylum-specific hybrid primers, and use this to develop COI primers for the Echinodermata. We aligned COI sequences from 310 echinoderm species and designed all possible primers along the consensus sequence with two methods (standard degenerate and hybrid). We found much lower degeneracy for hybrid primers (4-fold degeneracy) than for standard degenerate primers (≥48-fold degeneracy). We then designed the most conserved hybrid primers to amplify a >500-bp region within COI. These primers successfully amplified this gene region in all tested taxa (123 species across all echinoderm classes). Sequencing of 30 species among these confirmed both the quality of the sequences (>500 bp, no pseudogenes) and their utility as a DNA barcode. This method should be useful for developing primers for other mitochondrial genes and other phyla. The method will also be of interest for the development of future projects involving both community-based genetic assessments on macroorganisms and biodiversity assessment of environmental samples using high-throughput sequencing.  相似文献   

16.
Due to the high plasticity of coralline algae, identification based on morphology alone can be extremely difficult, so studies increasingly use a combination of morphology and genetics in species delimitation. A DNA barcoding study was carried out on maerl-forming coralline algae using the mitochondrial cytochrome oxidase 1 gene, CO1, and the plastid gene, psbA, on field specimens from Falmouth and Oban together with herbarium specimens from the Natural History Museum, UK, and the Smithsonian Institution, Washington, USA. Results revealed the presence in the north of Britain of a new species, Lithothamnion erinaceum Melbourne & J. Brodie, sp. nov., which was previously misidentified as Lithothamnion glaciale. The results also indicated that Lithothamnion lemoineae, which had earlier been recorded from Britain, was not present. One of the biggest concerns at present is how organisms will respond to climate change and ocean acidification, and it is imperative that investigations are put on a firm taxonomic basis. Our study has highlighted the importance of using molecular techniques to aid in the elucidation of cryptic diversity.  相似文献   

17.
There is currently international interest in the application of DNA barcoding as a tool for plant species discrimination and identification. In this study, we evaluated the utility of five candidate plant DNA barcoding regions [rbcL, matK, trnH-psbA, trnL-F and internal transcribed spacer (ITS)] in Eurasian yews. This group of species is taxonomically difficult because of a lack of clear-cut morphologically differences between species and hence represents a good test case for DNA barcoding. Forty-seven accessions were analysed, representing all taxa treated in current floristic works and covering most of the distribution range of Taxus in Eurasia. As single loci, trnL-F and ITS showed the highest species discriminatory power, each resolving 11 of 11 lineages (= barcode taxa). Species discrimination using matK, trnH-psbA and rbcL individually was lower, with matK resolving 8 of 10, trnH-psbA 7 of 11 and rbcL 5 of 11 successfully sequenced lineages. The proposed CBOL core barcode (rbcL + matK) resolved 8 of 11 lineages. Combining loci generally increased the robustness (measured by clade support) of the barcoding discrimination. Based on overall performance, trnL-F and ITS, separately or combined, are proposed as barcode for Eurasian Taxus. DNA barcoding discriminated recognized taxa of Eurasian Taxus, namely T. baccata, T. cuspidata, T. fuana and T. sumatrana, and identified seven lineages among the T. wallichiana group, some with distinct geographical distributions and morphologies, and potentially representing new species. Using the proposed DNA barcode, a technical system can be established to rapidly and reliably identify Taxus species in Eurasia for conservation protection and for monitoring illegal trade.  相似文献   

18.
Accurate specimen identification is challenging in groups with subtle or scarce taxonomically diagnostic characters, and the use of DNA barcodes can provide an effective means for consistent identification. Here, we investigate the utility of DNA barcode identification of species in a cosmopolitan genus of lichen‐forming fungi, Parmelia (Parmeliaceae). Two hundred and two internal transcribed spacer (ITS) sequences generated from specimens collected from all continents, including Antarctica, were analysed, and DNA barcodes of 14 species of Parmelia s.s. are reported. Almost all species show a barcode gap. Overall, intraspecific divergence values were lower than the threshold previously established for Parmeliaceae. However, the mean and range were elevated by deep barcode divergences in three species, indicating the likely occurrence of overlooked species‐level lineages. Here, we provide a DNA barcode reference library with well‐identified specimens sampled worldwide and sequences from most of the type material to enable easy and fast accurate sample identification and to assist in uncovering overlooked species in Parmelia s.s. Further, our results confirm the efficiency of the ITS region in the identification of species of Parmelia s.s. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2016, 180 , 21–29.  相似文献   

19.
DNA barcoding is a technique to identify species by using standardized DNA sequences. In this study, a total of 105 samples, representing 30 Parnassia species, were collected to test the effectiveness of four proposed DNA barcodes (rbcL, matK, trnH-psbA and ITS) for species identification. Our results demonstrated that all four candidate DNA markers have a maximum level of primer universality and sequencing success. As a single DNA marker, the ITS region provided the highest species resolution with 86.7%, followed by trnH-psbA with 73.3%. The combination of the core barcode regions, matK+rbcL, gave the lowest species identification success (63.3%) among any combination of multiple markers and was found unsuitable as DNA barcode for Parnassia. The combination of ITS+trnH-psbA achieved the highest species discrimination with 90.0% resolution (27 of 30 sampled species), equal to the four-marker combination and higher than any two or three marker combination including rbcL or matK. Therefore, matK and rbcL should not be used as DNA barcodes for the species identification of Parnassia. Based on the overall performance, the combination of ITS+trnH-psbA is proposed as the most suitable DNA barcode for identifying Parnassia species. DNA barcoding is a useful technique and provides a reliable and effective mean for the discrimination of Parnassia species, and in combination with morphology-based taxonomy, will be a robust approach for tackling taxonomically complex groups. In the light of our findings, we found among the three species not identified a possible cryptic speciation event in Parnassia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号