首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A genetic transformation procedure for Chamaecyparis obtusa was developed after co-cultivation of embryogenic tissues with disarmed Agrobacterium tumefaciens strain C58/pMP90, which harbours the sgfp (synthetic green fluorescent protein) visual reporter and nptII (neomycin phoshotransferase II) selectable marker genes. The highest transformation frequency was 22.5 independent transformed lines per dish (250 mg embryogenic tissue) following selection on kanamycin medium. Transgenic plantlets were regenerated through the maturation and germination of somatic embryos. The intensity of GFP fluorescence, observed under a fluorescence microscope, varied from very faint to relatively strong, depending on the transgenic line or part of the transgenic plant. The integration of the genes into the genome of regenerated plantlets was confirmed by Southern blot analysis.  相似文献   

2.
Summary Somatic embryogenesis from different genotypes of Asparagus officinalis L. could be obtained by in vitro culture of shoot apices. Apices were first cultured on an auxin-rich inducing medium and then transferred onto a hormone-free development medium. All genotypes tested in this way produced a few somatic embryos. In some experiments, during the development phase, a new kind of friable highly embryogenic tissue appeared in a random manner. These tissues could be continuously subcultured on a hormone-free medium and were named embryogenic lines. Five of these embryogenic lines regenerated plants from somatic embryos. These regenerated plants exhibited an increased embryogenic response compared to the parent plants; e.g. apex culture produced somatic embryos without any auxin treatments. For one of the embryogenic lines, a genetic analysis showed that the improved embryogenic response of regenerated plants was controlled by a mendelian dominant monogenic mutation.Abbreviations LSEA low somatic embryogenesis ability - HSEA high somatic embryogenesis ability - NAA 1-naphthaleneacetic acid  相似文献   

3.
Summary Twenty-three independent kanamycin resistant lines were obtained after cocultivation of longterm embryogenic cultures of three Asparagus officinalis L. genotypes with an Agrobacterium tumefaciens strain harboring ß-glucuronidase and neomycin phosphotransferase II genes. All the lines showed ß-glucuronidase activity by histological staining. DNA analysis by Southern blots of the kanamycin resistant embryogenic lines and of a plant regenerated from one of them confirmed the integration of the T-DNA.Abbreviations GUS ß-glucuronidase - X-Gluc 5-bromo-4-chloro-3indolyl ß-D-glucuronic acid - NPT II neomycin phosphotransferase II  相似文献   

4.
In order to improve the efficiency of cassava (Manihot esculenta Crantz) transformation, two different selection systems were assessed, a positive one based on the use of mannose as the selective agent, and a negative one based on hygromycin resistance encoded by an intron-containing hph gene. Transgenic plants selected on mannose or hygromycin were regenerated for the first time from embryogenic suspensions cocultivated with Agrobacterium. After the initial selection using mannose and hygromycin, 82.6% and 100% of the respective developing embryogenic callus lines were transgenic. A system allowing plant regeneration from only transgenic lines was designed by combining chemical selection with histochemical GUS assays. In total, 12 morphologically normal transgenic plant lines were produced, five using mannose and seven using hygromycin. The stable integration of the transgenes into the nuclear genome was verified using PCR and Southern analysis. RT-PCR and northern analyses confirmed the transgene expression in the regenerated plants. A rooting test on mannose containing medium was developed as an alternative to GUS assays in order to eliminate escapes from the positive selection system. Our results show that transgenic cassava plants can be obtained by using either antibiotic resistance genes that are not expressed in the micro-organisms or an antibiotic-free positive selection system.  相似文献   

5.
In order to increase the nutritional quality of cassava storage roots, which contain up to 85% starch of their dry weight, but are deficient in protein, a synthetic ASP1 gene encoding a storage protein rich in essential amino acids (80%) was introduced into embryogenic suspensions of cassava via Agrobacterium-mediated gene transfer. Transgenic plants were regenerated from suspension lines derived from hygromycin-resistant friable embryogenic callus lines. Molecular analysis showed the stable integration of asp1 in cassava genome and its expression at RNA level in transformed suspension lines. PCR and Southern analyses proved the transgenic nature of the regenerated plant lines. The expression of asp1 at RNA level was demonstrated by RT-PCR. The ASP1 tetramer could be detected in leaves as well as in primary roots of cultured transgenic plants by western blots. These results indicate that the nutritional improvement of cassava storage roots may be achieved by constitutive expression of asp1 in transgenic plants.  相似文献   

6.
Summary A translational fusion between the enhanced green fluorescent protein (EGFP) and neomycin phosphotransferase (NPTH) genes was used to optimize parameters influencing Agrobacterium-mediated transformation of Vitis vinifera L. cv. Thompson Seedless. The corresponding bifunctional protein produced from this EGFP/NPTH fusion gene allowed for a single promoter to drive expression of both green fluorescence and kanamycin resistance, thus conserving promoter resources and climinating potential promoter-promoter interactions. The fusion gene, driven by either a double cauliflower mosaic virus 35S (CaMV 35S) promoter or a double cassava vein mosaic virus (CsVMV) promoter, was immobilized into Agrobacterium strain EHA 105. Somatic embryos capable of direct secondary embryogenesis were used as target tissues to recover transgenic plants. Simultaneous visualization of GFP fluorescence and kanamycin selection of transgenic cells, tissues, somatic embryos, and plants were achieved. GFP expression and recovery of embryogenic culture lines were used as indicators to optimize transformation parameters. Preculturing of somatic embryos for 7 d on fresh medium prior to transformation minimized Agrobacterium-induced tissue browning/necrosis. Alternatively, browning/necrosis was reduced by adding 1 gl−1 of the antioxidant dithiothreitol (DTT) to post co-cultivation wash media. While combining preculture with antioxidant treatments did not result in a synergistic improvement in response, either treatment resulted in recovery of more stable embryogenic lines than did the control. A 48h co-cultivation period combined with 75 mgl−1 kanamycin in selection medium was optimal. DNA analysis confirmed stable integration of transgenes into the grape genome: 63% had single gene insertions, 27% had two inserts, and 7 and 3% had three and four inserts, respectively. Utilizing optimized procedures, over 1400 stable independent transgenic embryogenic culture lines were obtained, of which 795 developed into whole plants. Transgenic grapevines have exhibited normal vegetative morphology and stable transgene expression for over 5 yr.  相似文献   

7.
Summary The ability to non-destructively visualize transient and stable gene expression has made green fluorescent protein (GFP) a most efficient reporter gene for routine plant transformation studies. We have assessed two fluorescent protein mutants, enhanced GFP (EGFP) and enhanced yellow fluorescent protein (EYFP), under the control of the CaMV35S promoter, for their transient expression efficiencies after particle bombardment of embryogenic cultures of the peanut cultivar, Georgia Green. A third construct (p524EGFP.1) that expressed EGFP from a double 35S promoter with an AMV enhancer sequence also was compared. The brightest and most dense fluorescent signals observed during transient expression were from p524EGFP. 1 and EYFP. Optimized bombardment conditions consisted of 0.6 μm diameter gold particles, 12410 kPa bombardment pressure, 95 kPa vacuum pressure, and pretreatment with 0.4 M mannitol. Bombardments with p524EGFP.1 produced tissue sectors expressing GFP that could be visually selected under the fluorescence microscope over multiple subcultures. Embryogenic lines selected for GFP expression initially may have been chimeric since quantitative analysis of expression sometimes showed an increase when GFP-expressing lines, that also contained a hygromycin-resistance gene, subsequently were cultured on hygromycin. Transformed peanut plants expressing GFP were obtained from lines selected either visually or on hygromycin. Integration of the gfp gene in the genomic DNA of regenerated plants was confirmed by Southern blot hybridization and transmission to progeny.  相似文献   

8.
The aim of the present work was to study the effect of the developmental stage of the somatic embryos and of the genotype on the genetic transformation of embryogenic lines of European chestnut (Castanea sativa Mill.) and the cryopreservation of the embryogenic lines that are generated. As an initial source of explants in the transformation experiments, it was found that the use of somatic embryos isolated in the globular stage or clumps of 2–3 embryos in globular/heart-shaped stages was more effective (30%) than when embryos at the cotyledonary stage were used (6.7%). All of the seven genotypes tested were transformed, and transformation efficiency was clearly genotype dependent. Three transgenic lines were successfully cryopreserved using the vitrification procedure, and the stable integration of the uidA gene into the transgenic chestnut plants that were regenerated subsequent to cryopreservation was demonstrated.  相似文献   

9.
Summary Protoplasts of navel orange, isolated from embryogenic nucellar cell suspension culture, were fused with protoplasts of grapefruit isolated from leaf tissue. The fusion products were cultured in the hormone-free medium containing 0.6 M sucrose. Under the culture conditions, somatic embryogenesis of navel orange protoplasts was suppressed, while cell division of grapefruit mesophyll protoplasts was not induced. Six embryoids were obtained and three lines regenerated to complete plants through embryogenesis. Two of the regenerated lines exhibited intermediate morphological characteristics of the parents in the leaf shape. Chromosome counts showed that these regenerated plants had expected 36 chromosomes (2n=2x=18 for each parent). The rDNA analysis using biotin-labeled rRNA probes confirmed the presence of genomes from both parents in these plants. This somatic hybridization system would be useful for the practical Citrus breeding.  相似文献   

10.
Experiments were performed to determine the influence of maturation medium carbohydrate content on the rates of germination and plantlet conversion (root and shoot growth) of somatic embryos from four embryogenic lines derived from leaf or internode explants of Quercus robur L. seedlings. The conversion rate was favoured by high carbohydrate content as long as the maturation medium contained at least 2% sucrose, which was necessary for healthy embryo development. Given this, sorbitol and mannitol favoured the conversion rate more efficiently than sucrose, the highest rate, 32%, being achieved by medium with 6% sorbitol and 3% sucrose. Maturation treatment did not affect the root or shoot lengths of converted embryos. In supplementary experiments, 2 weeks of gibberellic acid treatment between maturation and germination treatments did not improve germination rates, but did reduce root length and the number of leaves per regenerated plantlet. In the four embryogenic lines tested, plant recovery rate was enhanced by inclusion of benzyladenine into the germination medium following culture of the embryos on maturation medium with 6% sorbitol and 2-3% sucrose. In embryogenic systems it is important to assess the uniformity of the regenerants. Random amplified polymorphic DNA (RAPD) analysis using 32 arbitrary oligonucleotide primers was performed to study variability in DNA sequences within and between four embryogenic lines. No intraclonal nor interclonal polymorphism was detected between embryogenic lines originating from different types of explant from the same seedling, but every one of the primers detected enough polymorphism among clones originating from different plants to allow these three origins to be distinguished. No differences in DNA sequences between regenerated plantlets and their somatic embryos of origin were detected, but a nodular callus line that had lost its embryogenic capacity was found to be mutant with respect to three other clones originating from the same plantlet. This study shows that high carbohydrate levels in the maturation medium significantly increase plant conversion of oak somatic embryos, which exhibit no variation in DNA sequences when proliferated by secondary embryogenesis.  相似文献   

11.
A genetic transformation system has been developed for selected embryogenic cell lines of hybrids Abies alba × A. cephalonica (cell lines AC2, AC78) and Abies alba × A. numidica (cell line AN72) using Agrobacterium tumefaciens. The cell lines were derived from immature or mature zygotic embryos on DCR medium containing BA (1 mg l−1). The T-DNA of plant transformation vector contained the β-glucuronidase reporter gene under the control of double dCaMV 35S promoter and the neomycin phosphotransferase selection marker gene driven by the nos promoter. The regeneration of putative transformed tissues started approximately 1 week after transfer to the selection medium containing 10 mg geneticin l−1. GUS activity was detected in most of the geneticin-resistant sub-lines AN72, AC2 and AC78, and the transgenic nature of embryogenic cell lines was confirmed by PCR approach. Plantlet regeneration from PCR-positive embryogenic tissues has been obtained as well. The presence of both gus and nptII genes was confirmed in 11 out of 36 analysed emblings.  相似文献   

12.
In vitro selection was carried out to obtain ethionine-resistant plants with increased contents of free methionine in the vegetative tissues of the forage legume Astragalus adsurgens Pall. Three-week-old cell colonies were derived from protoplasts mutagenized with N-methyl-N-nitrosoguanidine from embryogenic callus and were selected with 0.6mM ethionine. Four colony lines were isolated and their resistance to ethionine was 7–8 times that of the wild-type callus. No plant regeneration occurred on these colony lines in the differentiation medium containing ethionine. Only one colony line (R-1) regenerated plants through somatic embryogenesis in the absence of ethionine. Stem and leaf segments from the regenerated plants showed the same potential to produce callus in the presence of ethionine as in the absence of ethionine. The formed callus kept continuously growing in ethionine-containing medium. Free amino acid analysis revealed that colony line R-1, its regenerated plants and callus from the regenerated plants accumulated methionine at levels at 5–9 times higher than in wild-type. These results suggested that ethionine resistance and methionine over-accumulation were also expressed at plant level. Thus, the obtained resistant colony line that could regenerate plants with over-accumulation of methionine might provide an alternative approach to improve the nutritional quality of this forage.  相似文献   

13.
The trait for somatic embryogenesis is being introduced sexually into alfalfa (Medicago sativa) breeding populations to facilitate genetic transformation of this crop. Cocultivation experiments were conducted with an agronomically-improved embryogenic clone from one such population as well as with two other embryogenic clones, one of which was the source of the embryogenic trait in the breeding populations. Transgenic plants were produced from the agronomically-improved clone whereas none were produced from the other two clones. Among the 16 transgenic plants analyzed there was a range in both copy number and number of integration sites for the NPT-II gene; those plants regenerated after a prolonged selection phase in vitro generally had the highest numbers in both respects. There was no evidence of sectoral chimerism of the transgene in a subsample of transgenic plants analyzed by PCR.  相似文献   

14.
Summary Previous experiments have revealed that the maize transposable element Activator (Ac) may become active during tissue culture. The objective of the present study was to determine whether a second transposable element, Suppressor-mutator (Spm), could also be activated in tissue culture and detected in regenerated maize plants. Approximately 500 R1 progeny of 143 regenerated plants (derived from 49 embryo cell lines) were crossed as males onto an Spm-responsive tester stock. Spm activity was observed in two R1 progeny of a single regenerated plant. This plant had been regenerated from Type II (friable embryogenic) callus of an A188 × B73 genetic background after 8 months in culture; the absence of Spm activity in four other plants regenerated from this same callus demonstrates that Spm activity was not present before culturing. Approximately 20 Spm-homologous DNA sequences were detected in each of the inbreds used to initiate the tissue cultures; it is presumed that one of these became active to give rise to Spm activity.  相似文献   

15.
Summary Generation of transgenic papaya (Carica papaya L.) has been hampered by the low rates of transformation achieved by conventionalAgrobacterium infection or microprojectile bombardment. We describe an efficientAgrobacterium-mediated transformation method based on wounding of cultured embryogenic tissues with carborundum in liquid phase. Embryogenic tissues were obtained from cultured immature zygotic embryos collected 75–90 days after pollination. The expressible coat protein (CP) gene of a Taiwan strain of papaya ringspot virus (PRSV) was constructed in a Ti binary vector pBGCP, which contained the NPT-II gene as a selection marker. The embryogenic tissues were vortexed with 600 mesh carborundum in sterile distilled water for 1 min before treating with the disarmedA. tumefaciens containing the pBGCP. Transformed cells were cultured on kanamycin-free medium containing 2,4-D and carbenicillin for 2–3 weeks and then on the kanamycin medium for 3–4 months. The developed somatic embryos were transferred to the medium containing NAA, BA and kanamycin and subsequently regenerated into normal-appearing plants. Presence of the PRSV CP gene in the putative transgenic lines was detected by PCR and the expression of the CP was verified by Western blotting. The transgene was nuclearly inherited as revealed by segregation analysis in the backcrossed R1 progeny. From five independent experiments, the average successful rate of transformation was 15.9% of the zygotic embryos treated (52 transgenic somatic embryo clusters out of 327 zygotic embryos treated), about 10–100 times higher than the available methods previously reported. Thus, wounding highly regenerable differentiating tissues by carborundum vortexing provides a simple and efficient way for papaya transformation mediated byAgrobacterium.  相似文献   

16.
Embryogenic tissues of tea were cocultivated withAgrobacterium tumefaciens LBA4404. The plasmid pBi121, which contains the neomycin phosphotransferase II (nptII) gene providing kanamycin resistance as a selectable marker and the β-glucuronidase (uidA) reporter gene, was used as binary vector. The highest transformation frequency (12 transformants/g fresh weight [FW] of treated embryogenic tissue) was obtained with 5-day-old tissues grown in liquid medium and cocultivated withAgrobacterium for 2 d in the same medium but containing 50 μM acetosyringone. There was improvement in the recovery of kanamycin-resistant tissues when tissues were first grown for 10 d on a medium containing 350 mg/L Timentin to prevent bacterial overgrowth, before application of the selection pressure. Resistant tissues obtained after 6 wk on kanamycin-selection medium showed stableuidA expression. Polymerase chain reaction demonstrated the presence of the transgenes, while Southern hybridization confirmed their integration into the genome. Transgenic plants were regenerated from transformed tissues within 4 mo after coculture.  相似文献   

17.
Five microsatellite loci (QpZAG1/5, QpZAG9, QpZAG36, MSQ4, MSQ13) were used to test for genetic stability of three somatic embryogenic culture lines of Quercus robur L. and plantlets derived therefrom. DNA variation was detected among somatic embryos within all embryogenic lines, whereas no genetic instability was found among the regenerated plants. Two microsatellite loci revealed variation, and a locus-dependent instability was observed. The most polymorphic and useful microsatellite locus for detecting genetic variation was QpZAG9, with 28.5% of the investigated loci being variable.  相似文献   

18.
In an attempt to improve Agrobacterium-mediated transformation frequency of American chestnut somatic embryos, a novel method of inoculation/co-cultivation was developed. Plate flooding is a simple method where the Agrobacterium inoculum is poured onto the embryos while they remain on multiplication medium. This method tested the hypothesis that wounding tissues prior to co-cultivation was unnecessary or counterproductive. Two clones, WB296 and P1-1, were tested for differences in transformation efficiency as measured by the number of transformed embryogenic cell lines per Petri dish, the total number of transformed cell lines (embryos plus callus) and percentage of transformants that remained embryogenic. Plate flooding using clone WB296 produced significantly more transformed embryo cell lines and had a higher percentage of transformants remain embryogenic. The number of total transformed cell lines (embryos plus callus) was the same as obtained by other methods (desiccation, blot dry, sand abrasion, sonication and vacuum infiltration). With clone P1-1 there were no significant differences among the inoculation/co-cultivation treatments tested. Polymerase chain reaction and Southern hybridizations confirmed that the transgene of interest had been stably integrated into both American chestnut clones. Whole plants were regenerated from clone P1-1.  相似文献   

19.
The stable transformation of embryogenic tissues of Pinus nigra Arn., cell line E104, has been achieved using a biolistic approach. The introduced DNA consisted of the uidA reporter gene under the control of the double CaMV 35S promoter and the nptII selection gene controlled by the single CaMV 35S promoter. Three days after bombardment, putative transformed tissues were selected for continued proliferation on a medium containing 20 mg geneticin l−1. Resistant embryogenic tissue recovery required 10–12 weeks. The integration of the nptII and uidA genes was confirmed by both histochemical/fluorimetric GUS assays and PCR amplification of the inserts in the five geneticin resistant sub-lines of line E104. The activity of the uidA reporter gene in transgenic, embryogenic tissue lines was stable and could be detected after one year of culture. Somatic embryo maturation was, however, poor and no plantlet regeneration could be obtained.  相似文献   

20.
Expression of green-fluorescent protein gene in sweet potato tissues   总被引:7,自引:0,他引:7  
Green-fluorescent protein (GFP) gene expression, transient and stable after electroporation and particle bombardment, was analyzed in tissues of sweet potato cv.Beauregard. Leaf and petiole tissues were used for protoplast isolation and electroporation. After 48 h, approximately 25–30% of electroporated mesophyll cell protoplasts regenerated cell walls, and of these, 3% expressed GFP. Stable expression of GFP after four weeks of culture was observed in 1.0% of the initial GFP positive cells. In a separate experiment, we observed 600–700 loci expressing GFP 48 h after bombarding leaf tissue or embryogenic calli, and stable GFP-expressing sectors were seen in leaf-derived embryogenic calli after four weeks of protoplast culture without selection. These results demonstrate GFP gene expression in sweet potato tissues. Screening for GFP gene expression may prove useful to improve transformation efficiency and to facilitate detection of transformed sweet potato plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号