首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The feasibility of using methanotrophs in an attached-film, fluidized-bed (MAFFB) reactor system has been under investigation since 1987. Mixed culture, methane-utilizing attached biofilms were developed on diatomaceous earth particles and on granular activated carbon. The required feed gases, methane and oxygen, were supplied to the attached biofilm in disolved form using separate gas-liquid aeration columns. Biofilm growth was steady despite low influent dissolved methane concentrations (1 to 3 mg/L). A breeder MAFFB operated consistently for 4.1 years with attached biofilm concentrations as high as 51.7 g VS/L static-bed with minimal biomass wasting and with minimal buffer and nutrient inputs. The maximum biomass concentration observed was 75.6 g VS/L static-bed in a MAFFB reactor treating trichloroethene. Biofilm thickness reached 160 mum with typical values of 70 mum under methane and oxygen growht-rate-limited conditions. Biofilm densities of 120 to 190 g VS/L film were observed. Growth rates varied from <0.01/d to 0.17/d. Greater than 90% of the biomass concentration in the bed was attached, and effluent total suspended solids ranged from 5 to 74 mg/L, with an average of 24 mg/L over 27 runs in four MAFFB systems at upflow velocities of 11.4 to 25 m/h. Heterotrophic attached-film methanotrophs appear to be stable and useful for applications in toxics treatment, and other product manipulations. (c) 1992 John Wiley & Sons, Inc.  相似文献   

2.
甲烷氧化菌吸附膜反应器中环氧丙烷的连续生物转化   总被引:1,自引:0,他引:1  
以流化床作为固定化体系 ,在硅藻土颗粒表面构建了混合培养的甲烷氧化细菌的吸附膜。研究发现延迟期后固定化细胞的甲烷单加氧酶活性明显增加。流化床中 90 %以上的甲烷氧化细菌以吸附形式存在。吸附膜浓度为 3.3~3.7 mgdryweightcell gDS。通过批式反应考察了丙烯 甲烷共氧化过程合成环氧丙烷的可能性。研究了甲烷对丙烯环氧化以及丙烯对甲烷氧化细菌生长的影响。通过最佳配比的混合反应气体 (methane :35 % ;propene :20% ;oxygen :45 % )连续循环通入流化床反应器中抽提产物环氧丙烷 ,克服了产物抑制。该生物反应器最初产生环氧丙烷的日产量为 110~ 150μmol d ,连续操作25d ,未观察到环氧丙烷生产能力的明显减小.  相似文献   

3.
BothPseudomonas putida F1 and a mixed culture were used to study TCE degradation in continuous culture under aerobic, non-methanotrophic conditions. TCE mass balance studies were performed with continuous culture reactors to determine the total percent removed in the reactors, and to quantify the percent removed by air stripping and biodegradation. Adsorption of TCE to biomass was assumed to be negligible. This research demonstrated the feasibility of treating TCE-contaminated water under aerobic, non-methanotrophic conditions with a mixed-culture, continuous-flow system.Initially glucose and acetate were fed as primary substrates. Pnenol, which has been shown to induce TCE-degrading enzymes, was fed at a much lower concentration (20mg/L). Little degradation of TCE was observed when acetate and glucose were the primary substrates. After omitting glucose and acetate from the feed and increasing the phenol concentration to 50mg/L, TCE biotransformation was observed at a significant level (46%). When the phenol concentration in the feed was increased to 420mg/L, 85% of the incoming TCE was estimated to have been biodegraded. Under the same conditions, phenol utilization by the mixed culture was greater than that ofP. putida F1, and TCE degradation by the mixed culture (85%) exceeded that ofP. putida F1 (55%). The estimated percent-of-TCE biodegraded by the mixed culture was consistently greater than 80% when phenol was fed at 420mg/L. Biodegradation of TCE was also observed in mixed-culture, batch experiments.  相似文献   

4.
5.
Continuous ethanol fermentation by immobilized whole cells ofZymomonas mobilis was investigated in an expanded bed bioreactor and in a continuous stirred tank reactor at glucose concentrations of 100, 150 and 200 g L–1. The effect of different dilution rates on ethanol production by immobilized whole cells ofZymomonas mobilis was studied in both reactors. The maximum ethanol productivity attained was 21 g L–1 h–1 at a dilution rate of 0.36 h–1 with 150 g glucose L–1 in the continuous expanded bed bioreactor. The conversion of glucose to ethanol was independent of the glucose concentration in both reactors.  相似文献   

6.
Mixed culture of microorganisms immobilized onto Celite diatomaceous earth particles were used to degrade 3,4-dichloroaniline (34DCA) in a three-phase draft tube fluidized bed bioreactor. Biodegradation was confirmed as the dominant removal mechanism by measurements of the concomitant chloride ion evolution. Degradation efficiencies of 95% were obtained at a reactor retention time of 1.25 h. A mathematical model was used to describe the simultaneous diffusion and reaction of 34DCA and oxygen in the biofilms on the particles in the reactor. The parameters describing freely suspended cell growth on 34DCA were obtained in batch experiments. The model was found to describe the system well for three out of four steady states and to predict qualitatively the experimentally observed transition in the biofilm kinetics from 34DCA to oxygen limitation.  相似文献   

7.
Co-metabolic degradation of trichloroethylene (TCE) by Pseudomonas putida F1 was investigated in a novel bioreactor with a fibrous bed. A pseudo-first-order rate constant for TCE degradation was 1.4 h–1 for 2.4 to 100 mg TCE l–1. Competitive inhibition of toluene on TCE removal could be prevented in this bioreactor. 90% TCE was removed over 4 h when 95 mg toluene l–1 was presented simultaneously.  相似文献   

8.
This work is focused on the evaluation of a beta-cyclodextrin polymer as a carrier medium in a fluidized bed bioreactor treating aqueous phenol as a model pollutant. The insoluble polymer support was obtained in the shape of spherical beads by crosslinking beta-cyclodextrin with epichlorohydrin. A batch of swollen polymer particles was loaded into the reactor and inoculated with a mixed bacterial culture. Bacterial growth on the polymer beads was initially stimulated by glucose addition to the medium, and then gradually replaced with phenol. The operational variables studied after the acclimation period included phenol load, hydraulic residence time and recirculation flow rate. Low hydraulic residence times and moderate phenol loads were applied. The elimination capacity was usually about 1.0 kg-phenol/m(3)d, although a maximum of 2.8 kg-phenol/m(3)d was achieved with a retention time of only 0.55 h. The depuration efficiency was not affected by the recirculation flow rate in the range studied. Neither operational nor support stability problems were detected during the operation. A high degree of expansion was achieved in the bioreactor due to the hydrogel nature of the cyclodextrin polymer and, consequently, a low energy requirement was necessary to fluidize the bed.  相似文献   

9.
Temperature change affects methane consumption in soil. However, there is no information on possible temperature control of methanotrophic bacterial populations. Therefore, we studied CH(4) consumption and populations of methanotrophs in an upland forest soil and a rice field soil incubated at different temperatures between 5 and 45 degrees C for up to 40 days. Potential methane consumption was measured at 4% CH(4). The temporal progress of CH(4) consumption indicated growth of methanotrophs. Both soils showed maximum CH(4) consumption at 25-35 degrees C, but no activity at >40 degrees C. In forest soil CH(4) was also consumed at 5 degrees C, but in rice soil only at 15 degrees C. Methanotroph populations were assessed by terminal restriction fragment length polymorphism (T-RFLP) targeting particulate methane monooxygenase (pmoA) genes. Eight T-RFs with relative abundance >1% were retrieved from both forest and rice soil. The individual T-RFs were tentatively assigned to different methanotrophic populations (e.g. Methylococcus/Methylocaldum, Methylomicrobium, Methylobacter, Methylocystis/Methylosinus) according to published sequence data. Two T-RFs were assigned to ammonium monooxygenase (amoA) gene sequences. Statistical tests showed that temperature affected the relative abundance of most T-RFs. Furthermore, the relative abundance of individual T-RFs differed between the two soils, and also exhibited different temperature dependence. We conclude that temperature can be an important factor regulating the community composition of methanotrophs in soil.  相似文献   

10.
A quantitative fluorogenic PCR method for detecting methanogenic and methanotrophic orders was established using a refined primer set for the methyl coenzyme M reductase subunit A gene (mcrA). The method developed was applied to several microbial communities in which diversity and abundance of methanogens or anaerobic methanotrophs (ANMEs) was identified by 16S rRNA gene clone analysis, and strong correlations between the copy numbers of mcrA with those of archaeal 16S rRNA genes in the communities were observed. The assay can be applied to detecting and assessing the abundance of methanogens and/or ANMEs in anoxic environments that could not be detected by 16S rRNA gene sequence analyses.  相似文献   

11.
Anaerobic methanotrophic archaea have recently been identified in anoxic marine sediments, but have not yet been recovered in pure culture. Physiological studies on freshly collected samples containing archaea and their sulfate-reducing syntrophic partners have been conducted, but sample availability and viability can limit the scope of these experiments. To better study microbial anaerobic methane oxidation, we developed a novel continuous-flow anaerobic methane incubation system (AMIS) that simulates the majority of in situ conditions and supports the metabolism and growth of anaerobic methanotrophic archaea. We incubated sediments collected from within and outside a methane cold seep in Monterey Canyon, Calif., for 24 weeks on the AMIS system. Anaerobic methane oxidation was measured in all sediments after incubation on AMIS, and quantitative molecular techniques verified the increases in methane-oxidizing archaeal populations in both seep and nonseep sediments. Our results demonstrate that the AMIS system stimulated the maintenance and growth of anaerobic methanotrophic archaea, and possibly their syntrophic, sulfate-reducing partners. Our data demonstrate the utility of combining physiological and molecular techniques to quantify the growth and metabolic activity of anaerobic microbial consortia. Further experiments with the AMIS system should provide a better understanding of the biological mechanisms of methane oxidation in anoxic marine environments. The AMIS may also enable the enrichment, purification, and isolation of methanotrophic archaea as pure cultures or defined syntrophic consortia.  相似文献   

12.
A 20-l packed-bed reactor filled with foamed glass beads was tested for the treatment of acetonitrile HPLC wastes. Aeration was provided by recirculating a portion of the reactor liquid phase through an aeration tank, where the dissolved oxygen concentration was kept at 6 mg/l. At a feeding rate of 0.77 g acetonitrile l–1 reactor day–1, 99% of the acetonitrile was removed; and 86% of the nitrogen present in acetonitrile was released as NH3, confirming that acetonitrile volatilization was not significant. Increasing the acetonitrile loading resulted in lower removal efficiencies, but a maximum removal capacity of 1.0 g acetonitrile l–1 reactor day–1 was achieved at a feeding rate of 1.6 g acetonitrile l–1 reactor day–1. The removal capacity of the system was well correlated with the oxygenation capacity, showing that acetonitrile removal was likely to be limited by oxygen supply. Microbial characterization of the biofilm resulted in the isolation of a Comamonas sp. able to mineralize acetonitrile as sole carbon, nitrogen and energy source. This organism was closely related to C. testosteroni (91.2%) and might represent a new species in the Comamonas genus. This study confirms the potential of packed-bed reactors for the treatment of a concentrated mixture of volatile pollutants.  相似文献   

13.
14.
The current article examined the feasibility of inducing improved delivery and degradation of phenanthrene in a solid–liquid partitioning bioreactor system at bench scale by means of ultrasonic energy input. Initial degradation rates of phenanthrene by a microbial consortium, delivered from Desmopan, were improved 2.7‐fold in the presence of sonication relative to unsonicated controls. Results demonstrated that an operating window involving on/off sonication cycling improved substrate delivery and rational selection of ultrasound cycling profiles could lead to even further enhancements. Additionally, all results were obtained in a conventional bioreactor with commercial ultrasonic equipment and a commercially available polymer. Subsequent DGGE analysis demonstrated that the sonication cycles selected maintained consortium compositions, relative to control cases, and suggest that exposure would not reduce degradative capabilities under the periods of irradiation examined. Finally, consortium members were identified as belonging to the Pandoraea, Sphingobium, and Pseudoxanthomonas genera. Comparison of genetic sequences in the Ribosomal Database Project revealed that some of the bacterial members, identified at the strain level, had been previously observed in PAH degradations, while others have been reported only in the degradation of other aromatics, such as pesticides. Biotechnol. Bioeng. 2010;105: 997–1001. © 2009 Wiley Periodicals, Inc.  相似文献   

15.
Phytoremediation uses the natural ability of plants to degrade contaminants in groundwater. A field demonstration designed to remediate aerobic shallow ground‐water contaminated with trichloroethene began in April 1996 with the planting of cottonwood trees, a short‐rotation woody crop, over an approximately 0.2‐ha area at the Naval Air Station, Fort Worth, Texas. The project was developed to demonstrate capture of contaminated groundwater and degradation of contaminants by phreatophytes. Analyses from samples of groundwater collected from July 1997 to June 1998 indicate that tree roots have the potential to create anaerobic conditions in the groundwater that will facilitate degradation of trichloroethene by microbially mediated reductive dechlorination. Organic matter from root exudates and decay of tree roots probably stimulate microbial activity, consuming dissolved oxygen. Dissolved oxygen concentrations, which varied across the site, were smallest near a mature cottonwood tree (about 20 years of age and 60 meters southwest of the cottonwood plantings) where degradation products of trichloroethene were measured. Oxidation  相似文献   

16.
The biotreatment of complex mixtures of volatile organic compounds (VOCs) such as benzene, toluene, ethylbenzene, and xylene isomers (BTEX) has been investigated by many workers. However, the majority of the work has dealt with the treatment of aqueous or soil phase contamination. The biological treatment of gas and vapor phase sources of VOC wastes has recently received attention with increased usage of biofilters and bioscrubbers. Although these systems are relatively inexpensive, performance problems associated with biomass plugging, gas channeling, and support media acidification have limited their adoption. In this report we describe the development and evaluation of an alternative biotreatment system that allows rapid diffusion of both BTEX and oxygen through a silicone membrane to an active biofilm. The bioreactor system has a rapid liquid recycle, which facilitates nutrient medium mixing over the biofilm and allows for removal of sloughing cell mass. The system removed BTEX at rates up to 30 μg h−1 cm−2 of membrane area. BTEX removal efficiencies ranged from 75% to 99% depending on the BTEX concentration and vapor flowrate. Consequently, the system can be used for continuous removal and destruction of BTEX and other potential target VOCs in vapor phase streams. Journal of Industrial Microbiology & Biotechnology (2001) 26, 316–325. Received 14 August 2000/ Accepted in revised form 28 February 2001  相似文献   

17.
This article discusses the growth of methanotrophic biofilms. Several independent biofilm growths scenarios involving different inocula were examined. Biofilm growth, substrate removal and product formation were monitored throughout the experiments. Based on the oxygen consumption it was concluded that heterotrophs and nitrifiers co-existed with methanotrophs in the biofilm. Heterotrophic biomass grew on soluble polymers formed by the hydrolysis of dead biomass entrapped in the biofilm. Nitrifier populations developed because of the presence of ammonia in the mineral medium. Based on these experimental results, the computer program AQUASIM was used to develop a biological model involving methanotrophs, heterotrophs and nitrifiers. The modelling of six independent growth experiments showed that stoichiometric and kinetic parameters were within the same order of magnitude. Parameter estimation yielded an average maximum growth rate for methanotrophs, μm, of 1.5 ± 0.5 d−1, at 20 °C, a decay rate, bm, of 0.24 ± 0.1 d−1, a half saturation constant, , of 0.06 ± 0.05 mg CH4/L, and a yield coefficient, , of 0.57 ±: 0.04 g X/g CH4. In addition, a sensitivity analysis was performed on this model. It indicated that the most influential parameters were those related to the biofilm (i.e. density; solid-volume fraction; thickness). This suggests that in order to improve the model, further research regarding the biofilm structure and composition is needed.  相似文献   

18.
Abstract

Vitamin B12 and propionic acid that were simultaneous produced by Propionibacterium freudenreichii are both favorable chemicals widely used in food preservatives, medicine, and nutrition. While the carbon source and propionic acid accumulation reflected fermentation efficiency. In this study, using corn stalk as a carbon source and fed-batch fermentation process in an expanded bed adsorption bioreactor was studied for efficient and economic biosynthesis of acid vitamin B12 and propionic. With liquid hot water pretreated corn stalk hydrolysates as carbon source, 28.65?mg L?1 of vitamin B12 and 17.05?g L?1 of propionic acid were attained at 168?h in batch fermentation. In order to optimize the fermentation outcomes, fed-batch fermentation was performed with hydrolyzed corn stalk in expanded bed adsorption bioreactor (EBAB), giving 47.6?mg L?1 vitamin B12 and 91.4?g L?1 of propionic acid at 258?h, which correspond to product yields of 0.37?mg g?1 and 0.75?g g?1, respectively. The present study provided a promising strategy for economically sustainable production of vitamin B12 and propionic acid by P. freudenreichii fermentation using biomass cornstalk as carbon source and expanded bed adsorption bioreactor.  相似文献   

19.
Rapid cometabolism of trichloroethylene (TCE) by pure cultures of Methylosinus trichosporium OB3b PP358 was demonstrated in a two‐stage hollow‐fiber membrane bioreactor over the course of 3 weeks. PP358 was grown in a continuous‐flow chemostat and circulated through the shell of a hollow‐fiber membrane module (HFMM), while TCE contaminated water (160 to 1450 μg/L) was pumped through the fiber lumen (fiber interior). In parallel‐flow HFMM biological experiments, 82% to 89% of the influent TCE was removed from the lumen (5.1‐min residence time) with 99% of the transferred TCE undergoing biodegradation. Biological experiments in a larger capacity baffled radial‐flow HFMM resulted in 66% to 99% TCE transferred and 93% to 96% TCE biodegradation at lumen residence times of between 1.5 and 3.7 min. Biodegradation was maintained throughout the experiments at pseudo‐first‐order biodegradation rate constants of 0.41 to 2.8 L/mg TSS/day. Best‐fit computer modeling of the baffled radial‐flow biological process estimated mass transfer coefficients as large as 2.7 × 10−2 cm/min. The computer model was also shown to simulate the experimental results quite well. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 62: 681–692, 1999.  相似文献   

20.
Brobjer M 《Bioseparation》1999,8(1-5):219-228
A capture step was developed using the expanded bed adsorption technology to separate a protein of interest on a cation exchanger from a crude Escherichia coli homogenate. This method was developed in bench-top scale using a STREAMLINE 25 column (Amersham Pharmacia Biotech, Sweden) and STREAMLINE SP. The development was based on earlier experiments performed in a packed bed column (SP-Sepharose FF) to investigate the conditions for sample application, wash and elution. The packed bed method was transformed into an expanded bed method by slightly modifying the wash procedure and cleaning in place (CIP). This method was then scaled-up to pilot scale and used for production of the fusion protein according to cGMP.The yield over the step in pilot scale was 70-85% compared with only 30-50% in small scale. Pressure build-up, attachment of biomass to the adsorbent and collapses of the expanded bed were phenomena seen in small scale but not in pilot scale. The scale-up of the step significantly improved the performance of the step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号