首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cytoarchitecture of nuclei in the preoptic area, ventral thalamus, dorsal thalamus, epithalamus, hypothalamus, posterior tuberculum, synencephalon, and pretectum and the accessory optic nuclei was analyzed in a perciform teleost, the sea bass Dicentrarchus labrax, by using serial sections stained with cresyl-violet. In general, the cytoarchitecture of the preoptic area, ventral and dorsal thalamus, epithalamus, and synencephalon resembles the histological pattern of other teleosts. However, the parvocellular preoptic nucleus of sea bass has been subdivided into parvocellular and anteroventral parts for morphological and functional reasons. The hypothalamus of the sea bass seems to differ slightly from that of other teleosts. An elaborated lateral tuberal nucleus, with five subdivisions, and three different nuclei around the lateral recesses were recognized. A medial nucleus of the inferior lobe, which has been reported previously in the perciform Sparus aurata, is also present in the hypothalamus of sea bass but has not been described before in another advanced teleost. The organization of the pretectum and the accessory optic system is essentially similar in sea bass to that described in other perciforms with highly developed vision. The migrated portion of the posterior tuberculum of sea bass appears to differ from this region of the diencephalon in other teleosts. In sea bass, three cell masses that have been described previously only in the perciform Sparus aurata have been assigned to the migrated area of the posterior tuberculum. This study will provide the neuroanatomical basis for future morpho-functional studies to be done in the sea bass brain.  相似文献   

2.
As a first step in determining possible influences of the newly discovered estrogen receptor (ER)-beta on reproduction, we have localized mRNA for ER-beta within the male sheep hypothalamus using in situ hybridization and a rat ER-beta cRNA probe. Highest amounts of hybridization signal were observed in the preoptic area (POA), bed nucleus of the stria terminalis, paraventricular nucleus, and supraoptic nucleus. Relatively moderate amounts of hybridization signal were observed in the retrochiasmatic area (RCH), anterior hypothalamic area, dorsomedial hypothalamus, and lateral hypothalamus. Only a low level of hybridization signal was observed in the ventromedial hypothalamus, suprachiasmatic nucleus, and arcuate nucleus. The presence of ER-beta mRNA in several areas of the male sheep hypothalamus suggests multiple functions for this receptor. The distribution of ER-beta in the ovine hypothalamus was similar to that described for the rat, suggesting a high degree of functional conservation across species. A role for ER-beta in influencing reproduction is suggested by its presence in the POA and RCH, regions of the hypothalamus that control reproduction.  相似文献   

3.
In order to understand better the organisation of the ventral lateral geniculate nucleus of the ventral thalamus, this paper has examined the patterns of connections that this nucleus has with various nuclei of the dorsal thalamus in rats. Injections of biotinylated dextran or cholera toxin subunit B were made into the parafascicular, central lateral, posterior thalamic, medial dorsal, lateral dorsal, lateral posterior, dorsal lateral geniculate, anterior, ventral lateral, ventrobasal and medial geniculate nuclei of Sprague-Dawley rats and their brains were processed using standard tracer detection methods. Three general patterns of ventral lateral geniculate connectivity were seen. First, the parafascicular, central lateral, medial dorsal, posterior thalamic and lateral dorsal nuclei had heavy connections with the parvocellular (internal) lamina of the ventral lateral geniculate nucleus. This geniculate lamina has been shown previously to receive heavy inputs from many functionally diverse brainstem nuclei. Second, the visually related dorsal lateral geniculate and lateral posterior nuclei had heavy connections with the magnocellular (external) lamina of the ventral lateral geniculate nucleus. This geniculate lamina has been shown by previous studies to receive heavy inputs from the visual cortex and the retina. Finally, the anterior, ventral lateral, ventrobasal and medial geniculate nuclei had very sparse, if any, connections with the ventral lateral geniculate nucleus. Overall, our results strengthen the notion that one can package the ventral lateral geniculate nucleus into distinct visual (magnocellular) and non-visual (parvocellular) components.  相似文献   

4.
The presence and distribution of nitric oxide synthase (NOS)-like neurons as well as tyrosine hydroxylase-immunoreactive (TH) neurons was studied in the diencephalon of the cypriniform teleost Rhodeus sericeus. The anatomical relationships between tyrosine hydroxylase (TH)- and nitric oxide synthase (NOS)-containing cells were visualized both by NOS-immunohistochemistry and NADPH-histochemistry. Immunohistochemical labeling and morphological studies were performed on the same sections. The results reported in this paper show that both a NOS and TH activity are present in the preoptic region, posterior tuberculum, paraventricular organ and hypothalamus of R. sericeus. Putative nitrergic neurons were identified in all major hypophysiotrophic nuclei of the R. sericeus brain using both NADPH-d histochemistry and nNOS immunohistochemistry. In the preoptic region, nitrergic neurons were found in both the parvocellular and the magnocellular nuclei. Within these nuclei, the distribution of NADPH-d reactivity was similar to that of nNOS immunoreactivity. However, we found no evidence of colocalization of NADPH-d and nNOS in consecutive sections. NOS- and TH-containing neurons were observed in all the nuclei under study (hypothalamus, posterior tuberculum, ventral thalamus) and telencephalon (preoptic region), although most neurons showing the coexistence of both substances were mainly located in the preoptic nucleus and hypothalamus, some labelled neurons were found in the posterior tuberculum. Most of the cerebrospinalliquor-contacting cells (LCNs) in diencephalic periventricular area of R. sericeus were TH-immunoreactive. Also, a large number ofnitrergic small LCNs distributed throughout the third ventricle were observed in these regions. The data obtained supports the existence of a nitrergic circumventricular system in teleost. LCNs in R. sericeus are thought to be involved in osmoregulatory functions as osmosensitive neurons. Due to their chemical properties, NO produced by these cells might play an important role in the maintenance and regulation of CSF homeostasis through the modulation of cerebral blood flow.  相似文献   

5.
用兔抗人ER-α和ER-β多克隆抗体对文昌鱼神经系统、轮器哈氏窝和性腺进行免疫细胞化学的定位研究。结果揭示幼年和成年两性不同发育时期文昌鱼在这些部位分布ER-α和ER-β蛋白。ER-α定位在端脑、中脑、后脑和神经管中大多数神经细胞核,少数在胞质及其突起和神经纤维,ER-β则定位在细胞质或细胞膜上,少数在核内。ER—α免疫阳性物质主要分布在哈氏窝下层的上皮细胞核,少数在上层细胞质,β受体则在上层细胞核。在性腺,ER-α分布在卵巢中卵原细胞和小生长期卵母细胞胞质与核仁,生发泡(核)显免疫阴性,在大生长期卵母细胞核膜和核仁的免疫阳性显著增强,成熟期则在卵细胞生发泡表达,ER-β免疫阳性物质分布在卵原细胞和早期卵母细胞质以及成熟卵细胞的卵被膜检测到,生发泡显免疫阴性。在精巢,这两种ER亚型均定位在精原细胞、初级与次级精母细胞和足细胞质,精子细胞在胞核,精子显免疫阴性。另外,双染结果还揭示ER-α和ER-β在上述部位多数共存于同一细胞,少数在不同细胞表达,且在细胞定位有不同。首次发现这两种雌激素受体亚型在文昌鱼有广泛分布,它们介导雌激素对文昌鱼神经内分泌组织的调节作用。α和β受体在靶细胞定位的不同,提示两者在介导雌激素信号路线和基因转录机制可能有不同生理作用。  相似文献   

6.
Vasopressin and oxytocin in the neural control of the circulation   总被引:3,自引:0,他引:3  
Catecholamine innervation originating in dorsal medial and ventral lateral medulla terminates on parvocellular and magnocellular subnuclei, respectively, of the paraventricular nucleus of the hypothalamus. In turn, parvocellular pathways terminate in brain stem and spinal cord, whereas magnocellular pathways terminate in median eminence and posterior pituitary. Consistent with the neuroanatomy, we find that baroreceptor regulation of neuroendocrine (plasma vasopressin) and autonomic (blood pressure) functions can be dissociated. Further, studies indicate that sympathetic vasomotor pathways are activated by injections of vasopressin and oxytocin into the nucleus tractus solitarii and vasopressin into the lateral cerebral ventricles. Also, parasympathetic pathways to the heart and baroreflex function are activated and augmented, respectively, by i.v. administered vasopressin. These results are consistent with at least three central sites of action and suggest a complex role of vasopressin (and possibly oxytocin) in the central neural regulation of the heart and circulation.  相似文献   

7.
Summary The hypothalamus of the crocodile, Gavialis gangeticus, was investigated to reveal the organization of various nuclear complexes and to suggest homologies. The hypothalamic nuclei of G. gangeticus are composed of magnocellular and parvocellular neuronal entities. In the magnocellular system the nucleus supraopticus is well developed, whereas the nucleus paraventricularis and nucleus retrochiasmaticus are represented by scattered somata. Application of cytoarchitectonic criteria permits the delineation of 24 distinct parvocellular nuclear complexes extending rostrocaudally from the anterior commissure to the level indicated by the median eminence and nucleus mamillaris; some are further divisible into subgroups. The nucleus of the preoptic recess appears to be a unique property of the crocodilian hypothalamus. The nucleus suprachiasmaticus possesses a wing-like ventrolateral expansion that protrudes along the lateral aspect of the optic nerve. The tuberal region displays an elaborate pattern of nuclei segregated by regional specializations of the neuropil. The nucleus hypothalamicus posterior occupies the periventricular zone, flanked laterally by the nucleus hypothalamicus dorsomedialis and nucleus arcuatus. Further laterally, extended subdivisions of the nucleus hypothalamicus lateralis contain neurons rich in Nissl substance; the specializations shown by these subdivisions, in comparison to the lateral cell groups in lizards and snakes, are suggestive of enhanced integrative functions. The conspicuous paraventricular organ is encircled by dorsal and ventral divisions of the nucleus of the paraventricular organ. The neurons of the nucleus subfornicalis and nucleus hypothalamicus medialis are few in number, but large in size. The general organization of the hypothalamus of G. gangeticus reveals a mosaic-like pattern with the constituent groups appearing as clusters of small and large neurons, arranged medially and laterally in a definitive manner and accompanied by extensive zones of neuropil in the subependymal and lateral zones of the hypothalamus. The median eminence is divisible into an anterior and a posterior region. The nuclear pattern in the crocodilian hypothalamus reveals a higher state of morphologic organization compared to the situation in lizards or snakes, and thus reflects an evolutionary trend in the avian direction.  相似文献   

8.
Fetal neuroendocrine development in late gestation is critical for maintenance of fetal homeostasis, growth, and readiness for birth. We designed the present study to identify the regional patterns of expression of the two main isoforms of the estrogen receptor, ER-alpha and ER-beta, in the developing ovine fetal brain. Fetal (80, 100, 120, 130, and 145 days gestation), neonatal (1 and 7 days), and adult sheep were euthanized and the following tissues were collected: pituitary, hypothalamus, hippocampus, cerebral cortex, and brainstem. Both ER's are expressed in the ovine brain as early as 80 days gestation, and the expression of both receptors appears to be developmentally regulated. We conclude that both forms of the estrogen receptor are expressed in fetal brain and pituitary throughout the latter half of gestation.  相似文献   

9.
The fine structure of the parvocellular tuberal nuclei and that of the ependyma bordering the third ventricle in the basal hypothalamus of the White-crowned Sparrow, Zonotrichia leucophrys gambelii, have been investigated. Photoperiodically stimulated birds have been compared with birds held on short days. The perikarya of the neurons of the basal infundibular (tuberal) nucleus, and in part, of the more dorsal layers, contain dense-cored granules (1000-1500 A). The granules in the anterior part of the nucleus are somewhat larger than those of the posterior part. The synapses and the synaptic relationships of these cells are described. The single-layered ependyma of the third ventricle in the basal hypothalamus may be divided into the dorsal typical ependyma, the ventrolateral "glandular" ependyma, and the ventral "glandular" ependyma. Cells of the ventral ependyma lack apical cilia but bear a few microvillous processes. They have well-developed Golgi apparatus, conspicuous polysomes, and frequently dense, irregularly-shaped granules. Basal cytoplasmic processes extend ventrally to the outer surface of the median eminence. Photoperiodic stimulation appears to increase the numbers of apical protrusions of the cells in the ventral glandular ependyma and to cause an increase in size of the nerve cells of the basal infundibular nucleus.  相似文献   

10.
Summary An extensive system of somatostatin-immunoreactive neurons has been localized in the forebrain and pituitary of the molly (Poecilia latipinna), using the unlabelled antibody immunocytochemical method.In the hypothalamus, reactive perikarya were scattered throughout the parvocellular divisions of the preoptic nucleus. These cells were smaller in size and more ventral in position than those which stained with antisera to the neurohypophysial hormones, vasotocin and isotocin. A few very small somatostatin-immunoreactive cells were observed in the tuberal region and in the nuclei of the lateral and posterior recesses — areas which were rich in somatostatin-immunoreactive fibres.Somatostatin cells were also found in a small area of the ventral thalamus, mainly in the dorsolateral nucleus. Some of these neurons were large and multipolar, and appeared to form tracts of fibres into the posterior hypothalamus. In the telencephalon there were a few stained cells in the ventral area, with a complex pattern of fibres occurring in parts of the dorsal area.Somatostatin-immunoreactivity was intense in the central and posterior neurohypophysis, and particularly in its finger-like projections into the proximal pars distalis, around groups of growth hormone cells. Examination of material from fishes under various experimental conditions provided evidence for the somatostatin fibres originating from the preoptic neurons being involved in the control of growth hormone secretion.  相似文献   

11.
Detection of estrogen receptor-beta mRNA in breast cancer using RT-PCR   总被引:2,自引:0,他引:2  
The estrogen receptor (ER) is the most useful marker currently available for breast cancer, being used both to predict response to therapy and assess prognosis. Recently, a new form of the ER, known as ER-beta, was identified. In this preliminary study we show that ER-beta mRNA was expressed less frequently in breast cancers than ER-alpha. ER-alpha but not ER-beta levels correlated with ER protein as determined by ELISA. We conclude that ER-beta is expressed in approximately 50% of breast cancers but it does not appear to be detected by a widely available ELISA.  相似文献   

12.
D T Piekut 《Peptides》1985,6(5):883-890
Dual antigen immunocytochemical staining procedures were used in the same tissue section to determine the distribution of ACTH immunostained fibers and varicosities within the magnocellular and parvocellular divisions in the paraventricular nucleus (PVN) of rat hypothalamus and elucidate its anatomical relationship to vasopressin (VP) and oxytocin (OXY)-containing neurons. Double immunostained preparations using glucose oxidase-antiglucose oxidase complex combined with PAP complex to visualize two antigens with contrasting colors in the same tissue section were employed. ACTH-immunoreactive (ir) fibers were distributed throughout the periventricular stratum and the parvocellular component of the PVN; in the latter area fibers were particularly dense in the ventral medial portion of the medial parvocellular division. Dual immunostained sections revealed a close anatomical association between opiocortin fibers and oxytocin and vasopressin parvocellular neurons. ACTH immunostained fibers were present in the anterior and medial magnocellular component of PVN and in the ventral medial portion of the posterior magnocellular division; these immunoreactive fibers were in intimate proximity to oxytocin-ir perikarya. The very close approximation between the ACTH-ir fibers and oxytocin-containing cell bodies suggests potential cell to cell communication between the two peptidergic systems in PVN. Few ACTH immunostained fibers were seen in the dorsal lateral portion of the posterior magnocellular division in which vasopressinergic neurons predominate. The present anatomical study supports pharmacological and physiological studies which indicate that opioids can influence the activity of magnocellular PV neurons. This study also elucidates an anatomical relationship between opiocortins (ACTH1-39) and parvocellular PV neurons which suggests that the opiocortin system may play a role in the regulation of both the neuroendocrine and autonomic activities of specific PV neurons.  相似文献   

13.
The preoptic area/anterior hypothalamus (POA/AH) sits as a boundary region rostral to the classical diencephalic hypothalamus and ventral to the telencephalic septal region. Numerous studies have pointed to the region's importance for sex‐dependent functions. Previous studies suggested that migratory guidance cues within this region might be particularly unique in their diversity. To better understand the early development and differentiation of the POA/AH, cytoarchitectural, birthdate, immunocytochemical, and cell migration studies were conducted in vivo and in vitro using embryonic C57BL/6J mice. A medial preoptic nucleus became discernible using Nissl stain in males and females between embryonic days (E) E15 and E17. Cells containing immunoreactive estrogen receptor‐α were detected in the POA/AH by E13, and increased in number with age in both sexes. From E15 to E17, examination of the radial glial fiber pattern by immunocytochemistry confirmed the presence of dual orientations for migratory guidance ventral to the anterior commissure (medial‐lateral and dorsal‐ventral) and uniform orientation more caudally (medial‐lateral). Video microscopy studies followed the migration of DiI‐labeled cells in coronal 250‐μm brain slices from E15 mice maintained in serum‐free media for 1–3 days. Analyses showed significant migration along a dorsal‐ventral orientation in addition to medial‐lateral. The video analyses showed significantly more medial‐lateral migration in males than females in the caudal POA/AH. In vivo, changes in the distribution of cells labeled by the mitotic indicator bromodeoxyuridine (BrdU) suggested their progressive migration through the POA/AH. BrdU analyses also indicated significant movement from dorsal to ventral regions ventral to the anterior commissure. The significant dorsal‐ventral migration of cells in the POA/AH provides additional support for the notion that the region integrates developmental information from both telencephalic and diencephalic compartments. The sex difference in the orientation of migration of cells in the caudal POA/AH suggests one locus for the influence of gonadal steroids in the embryonic mouse forebrain. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 252–266, 1999  相似文献   

14.
We recently identified a novel hypothalamic neuropeptide inhibiting gonadotropin release in the quail brain and termed it gonadotropin inhibitory hormone (GnIH). In this study, we investigated the localization and distribution of GnIH in both sexes of adult quails by immunohistochemistry with a specific antiserum against GnIH and in situ hybridization. Quantitative analysis demonstrated that the concentration of GnIH in the diencephalon was greater than that in the mesencephalon without sex difference. GnIH concentrations in the cerebrum and cerebellum were below the level of detectability. Clusters of GnIH-like immunoreactive (GnlH-ir) cell bodies were localized in the paraventricular nucleus (PVN) of the hypothalamus. There was no significant difference in the number of GnlH-ir cells in the PVN between males and females. By double immunostaining with antisera reacting with GnIH or avian posterior pituitary hormones (vasotocin and mesotocin), GnIH-ir cells were found to be parvocellular neurons in the ventral portion of PVN, which showed no immunoreaction with the antisera against vasotocin and mesotocin. In situ hybridization revealed the cellular localization of GnIH mRNA in the PVN. GnIH-ir nerve fibers were however widely distributed in the diencephalic and mesencephalic regions. Dense networks of immunoreactive fibers were found in the ventral paleostriatum, septal area, preoptic area, hypothalamus, and optic tectum. The most prominent fibers were seen in the median eminence of the hypothalamus and the dorsal motor nucleus of the vagus in the medulla oblongata. Thus, GnIH may participate not only in neuroendocrine functions, but also in behavioral and autonomic mechanisms.  相似文献   

15.
Summary In the hypothalamus of the turtle, Lissemys punctata granosa, two magnocellular and 23 parvocellular neuronal complexes can be distinguished. The magnocellular complexes include the nucleus supraopticus and the nucleus paraventricularis; paraventricular neurons are partly arranged in rows parallel to the third ventricle. Most infundibular parvocellular nuclei display neurons disposed in rows parallel to the ventricular surface. In the preoptic region, the prominent parvocellular neuronal complexes encompass the nucleus periventricularis anterior, lateral preoptic area, the nucleus of the anterior commissure and the nucleus suprachiasmaticus. The prominent nucleus periventricularis posterior extends caudad and shows neurons arranged in vertical rows parallel to the third ventricle. Other parvocellular nuclei of the rostral hypothalamus are composed of clustered subunits. The nucleus arcuatus is a fairly large nuclear entity extending from the level marked dorsally by the nucleus paraventricularis to the area occupied by the nucleus of the paraventricular organ. A well-developed ventromedial nucleus is located ventrolateral to the paraventricular organ. The prominent paraventricular organ consists of tightly arranged neurons, some of which possess apical projections into the third ventricle; it is surrounded by the nucleus of the paraventricular organ. Nucleus hypothalamicus medialis et lateralis, nucleus hypothalamicus posterior and the nuclei recessus infundibuli are further nuclear units of the tuberal region. The caudal end of the hypothalamus is marked by the nucleus mamillaris; its neurons are scattered among the fibers of the retroinfundibular commissure. The median eminence is well developed and shows a large medial and two lateral protrusions into the infundibular recess.  相似文献   

16.
Using an antiserum generated in rabbits against synthetic galanin (GA) and the indirect immunofluorescence method, the distribution of GA-like immunoreactive cell bodies and nerve fibers was studied in the rat central nervous system (CNS) and a detailed stereotaxic atlas of GA-like neurons was prepared. GA-like immunoreactivity was widely distributed in the rat CNS. Appreciable numbers of GA-positive cell bodies were observed in the rostral cingulate and medial prefrontal cortex, the nucleus interstitialis striae terminalis, the caudate, medial preoptic, preoptic periventricular, and preoptic suprachiasmatic nuclei, the medial forebrain bundle, the supraoptic, the hypothalamic periventricular, the paraventricular, the arcuate, dorsomedial, perifornical, thalamic periventricular, anterior dorsal and lateral thalamic nuclei, medial and central amygdaloid nuclei, dorsal and ventral premamillary nuclei, at the base of the hypothalamus, in the central gray matter, the hippocampus, the dorsal and caudoventral raphe nuclei, the interpeduncular nucleus, the locus coeruleus, ventral parabrachial, solitarii and commissuralis nuclei, in the A1, C1 and A4 catechaolamine areas, the posterior area postrema and the trigeminal and dorsal root ganglia. Fibers were generally seen where cell bodies were observed. Very dense fiber bundles were noted in the septohypothalamic tract, the preoptic area, in the hypothalamus, the habenula and the thalamic periventricular nucleus, in the ventral hippocampus, parts of the reticular formation, in the locus coeruleus, the dorsal parabrachial area, the nucleus and tract of the spinal trigeminal area and the substantia gelatinosa, the superficial layers of the spinal cord and the posterior lobe of the pituitary. The localization of the GA-like immunoreactivity in the locus coeruleus suggests a partial coexistence with catecholaminergic neurons as well as a possible involvement of the GA-like peptide in a neuroregulatory role.  相似文献   

17.
生后雌性小鼠下丘脑室旁核内ER—β表达的免疫组化研究   总被引:3,自引:0,他引:3  
研究发现小鼠下丘脑室旁核(PVN)内雌激素β受体(ER-β)的表达与在大鼠等一些实验动物脑PVN的表达有差异,提示其在小鼠PVN内的表达可能有特定的生理意义。为了深入探讨ER—β在小鼠PVN内的功能,本文采用硫酸镍铵增强显色的免疫组化SP法研究了ER—β在生后雌性小鼠PVN内的表达。结果发现ER—β免疫阳性物质主要见于PVN的大细胞部,在小细胞部和背侧帽部免疫阳性细胞数目较少。免疫阳性物质主要位于细胞核内,未发现明显的胞浆或突起阳性,但在发育的某些时期可见免疫阳性细胞核局部呈现阴性反应。最高表达见于生后早期(第1—9天),随后表达降低,生后一个月即达到成年水平。PVN内ER-β的表达模式表现为生后早期表达高、随后降低,提示在该部位ER—β可能主要参与了对生后早期PVN的神经内分泌活动以及神经结构的发育与完善的调控,并可能与生后早期动物的应激、体重增加和脂肪代谢等有关。  相似文献   

18.
An antiserum raised against the synthetic tripeptide pyroglutamyl-histidyl-proline (free acid) was used to localize thyrotropin-releasing hormone (TRH) in the rat central nervous system (CNS) by immunocytochemistry. The distribution of TRH-immunoreactive structures was similar to that reported earlier; i.e., most of the TRH-containing perikarya were located in the parvicellular part of the hypothalamic paraventricular nucleus, the suprachiasmatic portion of the preoptic nucleus, the dorsomedial nucleus, the lateral basal hypothalamus, and the raphe nuclei. Several new locations for TRH-immunoreactive neurons were also observed, including the glomerular layer of the olfactory bulb, the anterior olfactory nuclei, the diagonal band of Broca, the septal nuclei, the sexually dimorphic nucleus of the preoptic area, the reticular thalamic nucleus, the lateral reticular nucleus of the medulla oblongata, and the central gray matter of the mesencephalon. Immunoreactive fibers were seen in the median eminence, the organum vasculosum of the lamina terminalis, the lateral septal nucleus, the medial habenula, the dorsal and ventral parabrachial nuclei, the nucleus of the solitary tract, around the motor nuclei of the cranial nerves, the dorsal vagal complex, and in the reticular formation of the brainstem. In the spinal cord, no immunoreactive perikarya were observed. Immunoreactive processes were present in the lateral funiculus of the white matter and in laminae V-X in the gray matter. Dense terminal-like structures were seen around spinal motor neurons. The distribution of TRH-immunoreactive structures in the CNS suggests that TRH functions both as a neuroendocrine regulator in the hypothalamus and as a neurotransmitter or neuromodulator throughout the CNS.  相似文献   

19.
Connections of the neurons of the spinal cord ventral horn with the structures, situating above have been investigated. After injection of uranyl acetate into the TIII segment of the spinal cord, labelled neurons are found in various reticular nuclei of the medulla oblongata. At the level of the roots of the XII pair of the cranial nerves they are revealed in the reticular paramedian, ventral, parvocellular and lateral nuclei. The formations mentioned participate in regulation of the cardio-vascular system. More rostral (2 and 4 mm relatively to the roots of the XII pair of the cranial nerves) the neurons are observed in the reticular giant cellular nucleus, in nuclei of the raphe and in the group of the P-substance reactive neurons. Besides, labelled neurons are revealed in the posterior, lateral fields and in the dorso- and ventromedial nuclei of the hypothalamus.  相似文献   

20.
The distribution of FMRFamide-like-immunoreactive peptides was investigated in the brain and pituitary of the elasmobranch fish Scyliorhinus canicula using the indirect immunofluorescence technique. FMRFamide-immunoreactive cells and fibers were mainly observed in the telencephalon and the diencephalon, while other brain structures were almost unstained. In the telencephalon, FMRFamide-like-containing neurons were seen in the caudal part of the area periventricularis pallialis, in the posterior area of the nucleus septi medialis and in the nucleus septi caudoventralis. In the diencephalon, numerous FMRFamide-positive cell bodies were observed in the hypothalamus, ventral thalamus and posterior tuberculum. The highest density of immunofluorescent perikarya was found in the nucleus lobi lateralis hypothalami and in the nucleus periventricularis hypothalami. More caudally, the mesencephalon and the caudal brainstem only contained scattered varicose FMRFamide-immunoreactive fibers. Stained fibers were also identified in the median eminence and several FMRFamide-like-positive cells were detected in the dorsal and rostral parts of the neurointermediate lobe of the pituitary. These data indicate that substances related to the molluscan cardioexcitatory peptide FMRFamide are widely distributed in the brain of S. canicula, suggesting their implication in neuroendocrine and/or neuromodulatory functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号