共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Junhong Guan Xiaofeng Zheng 《Biochemical and biophysical research communications》2019,508(4):1240-1244
Genome integrity is important for cell growth, development and proliferation. The E3 ligase RAD18 plays a vital role in the DNA damage response (DDR) to maintain genome integrity. Recent studies reveal that RAD18 has non-ubiquitinated and mono-ubiquitinated form in normal cells. However, whether RAD18 undergoes other post-translational modification remains to be investigated. Here we show that RAD18 is a target of NEDD8, an ubiquitin-like protein. In response to hydrogen peroxide (H2O2)-induced oxidative stress, RAD18 NEDDylation increases significantly, while its ubiquitination decreases. Moreover, NEDD8 overexpression or deNEDDylase NEDP1 deletion further antagonizes RAD18 ubiquitination. In addition, treatment with MLN4924, an inhibitor of NEDD8-activating Enzyme, reduces the interaction between PCNA and RAD18, which blocks the localization of RAD18 to form foci, and thus inhibiting polymerase η recruitment after oxidative stress. Together, our study demonstrates that RAD18 NEDDylation regulates its localization and involves in the DDR pathway by modulating RAD18 ubiquitination. 相似文献
3.
Chen Xie Hongwei WangHongbin Cheng Jianhua LiZhi Wang Wu Yue 《Biochemical and biophysical research communications》2014
Radioresistance remains a major challenge in the treatment of glioblastoma multiforme (GBM). RAD18 a central regulator of translesion DNA synthesis (TLS), has been shown to play an important role in regulating genomic stability and DNA damage response. In the present study, we investigate the relationship between RAD18 and resistance to ionizing radiation (IR) and examined the expression levels of RAD18 in primary and recurrent GBM specimens. Our results showed that RAD18 is an important mediator of the IR-induced resistance in GBM. The expression level of RAD18 in glioma cells correlates with their resistance to IR. Ectopic expression of RAD18 in RAD18-low A172 glioma cells confers significant resistance to IR treatment. Conversely, depletion of endogenous RAD18 in RAD18-high glioma cells sensitized these cells to IR treatment. Moreover, RAD18 overexpression confers resistance to IR-mediated apoptosis in RAD18-low A172 glioma cells, whereas cells deficient in RAD18 exhibit increased apoptosis induced by IR. Furthermore, knockdown of RAD18 in RAD18-high glioma cells disrupts HR-mediated repair, resulting in increased accumulation of DSB. In addition, clinical data indicated that RAD18 was significantly higher in recurrent GBM samples that were exposed to IR compared with the corresponding primary GBM samples. Collectively, our findings reveal that RAD18 may serve as a key mediator of the IR response and may function as a potential target for circumventing IR resistance in human GBM. 相似文献
4.
Takeshi Hirakawa Junko Hasegawa Charles I. White Sachihiro Matsunaga 《The Plant journal : for cell and molecular biology》2017,90(2):372-382
Plants have various defense mechanisms against environmental stresses that induce DNA damage. Genetic and biochemical analyses have revealed the sensing and signaling of DNA damage, but little is known about subnuclear dynamics in response to DNA damage in living plant cells. Here, we observed that the chromatin remodeling factor RAD54, which is involved in DNA repair via the homologous recombination pathway, formed subnuclear foci (termed RAD54 foci) in Arabidopsis thaliana after induction of DNA double‐strand breaks. The appearance of RAD54 foci was dependent on the ATAXIA‐TELANGIECTASIA MUTATED–SUPPRESSOR OF GAMMA RESPONSE 1 pathway, and RAD54 foci were co‐localized with γH2AX signals. Laser irradiation of a subnuclear area demonstrated that in living cells RAD54 was specifically accumulated at the damaged site. In addition, the formation of RAD54 foci showed specificity for cell type and region. We conclude that RAD54 foci correspond to DNA repair foci in A. thaliana. 相似文献
5.
6.
BRCA1 carboxyl-terminal (BRCT) motifs are present in a number of proteins involved in DNA repair and/or DNA damage signaling pathways. The BRCT domain-containing protein BRCTx has been shown to interact physically with RAD18, an E3 ligase involved in postreplication repair and homologous recombination repair. However, the physiological relevance of the interaction between RAD18 and BRCTx is largely unknown. In this study, we showed that RAD18 interacts with BRCTx in a phosphorylation-dependent manner and that this interaction, mediated via highly conserved serine residues on the RAD18 C terminus, is required for BRCTx accumulation at DNA damage sites. Furthermore, we uncovered critical roles of the RAD18-BRCTx module in UV-induced DNA damage repair but not PCNA mono-ubiquitination or homologous recombination. Thus, our results suggest that RAD18 has an additional function in the surveillance of the UV-induced DNA damage response signal. 相似文献
7.
Watson NB Nelson E Digman M Thornburg JA Alphenaar BW McGregor WG 《Mutation research》2008,648(1-2):23-31
Proteins required for translesion DNA synthesis localize in nuclear foci of cells with replication-blocking lesions. The dynamics of this process were examined in human cells with fluorescence-based biophysical techniques. Photobleaching recovery and raster image correlation spectroscopy experiments indicated that involvement in the nuclear foci reduced the movement of RAD18 from diffusion-controlled to virtual immobility. Examination of the mobility of REV1 indicated that it is similarly immobilized when it is observed in nuclear foci. Reducing the level of RAD18 greatly reduced the focal accumulation of REV1 and reduced UV mutagenesis to background frequencies. Fluorescence lifetime measurements indicated that RAD18 and RAD6A or poleta only transferred resonance energy when these proteins colocalized in damage-induced nuclear foci, indicating a close physical association only within such foci. Our data support a model in which RAD18 within damage-induced nuclear foci is immobilized and is required for recruitment of Y-family DNA polymerases and subsequent mutagenesis. In the absence of damage these proteins are not physically associated within the nucleoplasm. 相似文献
8.
Chromosomal repair was studied in stationary-phase Saccharomyces cerevisiae, including rad52/rad52 mutant strains deficient in repairing double-strand breaks (DSBs) by homologous recombination. Mutant strains suffered more chromosomal fragmentation than RAD52/RAD52 strains after treatments with cobalt-60 gamma irradiation or radiomimetic bleomycin, except after high bleomycin doses when chromosomes from rad52/rad52 strains contained fewer DSBs than chromosomes from RAD52/RAD52 strains. DNAs from both genotypes exhibited quick rejoining following gamma irradiation and sedimentation in isokinetic alkaline sucrose gradients, but only chromosomes from RAD52/RAD52 strains exhibited slower rejoining (10 min to 4 hr in growth medium). Chromosomal DSBs introduced by gamma irradiation and bleomycin were analyzed after pulsed-field gel electrophoresis. After equitoxic damage by both DNA-damaging agents, chromosomes in rad52/rad52 cells were reconstructed under nongrowth conditions [liquid holding (LH)]. Up to 100% of DSBs were eliminated and survival increased in RAD52/RAD52 and rad52/rad52 strains. After low doses, chromosomes were sometimes degraded and reconstructed during LH. Chromosomal reconstruction in rad52/rad52 strains was dose dependent after gamma irradiation, but greater after high, rather than low, bleomycin doses with or without LH. These results suggest that a threshold of DSBs is the requisite signal for DNA-damage-inducible repair, and that nonhomologous end-joining repair or another repair function is a dominant mechanism in S. cerevisiae when homologous recombination is impaired. 相似文献
9.
RAD18 and RAD54 cooperatively contribute to maintenance of genomic stability in vertebrate cells 下载免费PDF全文
Yamashita YM Okada T Matsusaka T Sonoda E Zhao GY Araki K Tateishi S Yamaizumi M Takeda S 《The EMBO journal》2002,21(20):5558-5566
Translesion DNA synthesis (TLS) and homologous DNA recombination (HR) are two major pathways that account for survival after post-replicational DNA damage. TLS functions by filling gaps on a daughter strand that remain after DNA replication caused by damage on the mother strand, while HR can repair gaps and breaks using the intact sister chromatid as a template. The RAD18 gene, which is conserved from lower eukaryotes to vertebrates, is essential for TLS in Saccharomyces cerevisiae. To investigate the role of RAD18, we disrupted RAD18 by gene targeting in the chicken B-lymphocyte line DT40. RAD18(-/-) cells are sensitive to various DNA-damaging agents including ultraviolet light and the cross-linking agent cisplatin, consistent with its role in TLS. Interestingly, elevated sister chromatid exchange, which reflects HR- mediated post-replicational repair, was observed in RAD18(-/-) cells during the cell cycle. Strikingly, double mutants of RAD18 and RAD54, a gene involved in HR, are synthetic lethal, although the single mutant in either gene can proliferate with nearly normal kinetics. These data suggest that RAD18 plays an essential role in maintaining chromosomal DNA in cooperation with the RAD54-dependent DNA repair pathway. 相似文献
10.
11.
DNA damage and DNA repair have been observed in cultured human skin fibroblasts exposed to potassium chromate but not to a chromic glycine complex. DNA repair synthesis (unscheduled incorporation of [3H]thymidine (TdR)) was measured in cells during or following exposure to chromate and was significant for chromate concentrations above 10(-6) M. Maximal DNA repair was observed at about 10(-4) M chromate. DNA repair capacity was found to be saturated at this concentration. Chromate was stable for at least 8 h in culture medium and produced approximately a linear increase in repair with duration of exposure. DNA damage as determined by alkaline sucrose gradient sedimentation was detected after treatment for 1.5 h with 5 . 10(-4) M chromate. Exposure to 10(-7) M chromate solution for 7 days inhibited colony formation while acute (1 h) treatment was toxic at 5 . 10(-6) M. The chromic glycine complex was toxic above 10(-3) M for a 1-week exposure but was not observably toxic after a 1-h treatment. These results indicate that chromate and not chromic compounds may be the carcinogenic form for man. The nature of the ultimate carcinogen is discussed. These findings illustrate the utility of the DNA repair technique to study the effects on human cells of inorganic carcinogens and mutagens. 相似文献
12.
DNA loop heterologies are products of normal DNA metabolism and can lead to severe genomic instability if unrepaired. To understand how human cells process DNA loop structures, a set of circular heteroduplexes containing a 30-nucleotide loop were constructed and tested for repair in vitro by human cell nuclear extracts. We demonstrate here that, in addition to the previously identified 5' nick-directed loop repair pathway (Littman, S. J., Fang, W. H., and Modrich, P. (1999) J. Biol. Chem. 274, 7474-7481), human cells can process large DNA loop heterologies in a loop-directed manner. The loop-directed repair specifically removes the loop structure and occurs only in the looped strand, and appears to require limited DNA synthesis. Like the nick-directed loop repair, the loop-directed repair is independent of many known DNA repair pathways, including DNA mismatch repair and nucleotide excision repair. In addition, our data also suggest that an aphidicolin-sensitive DNA polymerase is involved in the excision step of the nick-directed loop repair pathway. 相似文献
13.
14.
Tarsounas M Davies AA West SC 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2004,359(1441):87-93
The efficient repair of double-strand breaks in DNA is critical for the maintenance of genome stability. In response to ionizing radiation and other DNA-damaging agents, the RAD51 protein, which is essential for homologous recombination, relocalizes within the nucleus to form distinct foci that can be visualized by microscopy and are thought to represent sites where repair reactions take place. The formation of RAD51 foci in response to DNA damage is dependent upon BRCA2 and a series of proteins known as the RAD51 paralogues (RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3), indicating that the components present within foci assemble in a carefully orchestrated and ordered manner. By contrast, RAD51 foci that form spontaneously as cells undergo DNA replication at S phase occur without the need for BRCA2 or the RAD51 paralogues. It is known that BRCA2 interacts directly with RAD51 through a series of degenerative motifs known as the BRC repeats. These interactions modulate the ability of RAD51 to bind DNA. Taken together, these observations indicate that BRCA2 plays a critical role in controlling the actions of RAD51 at both the microscopic (focus formation) and molecular (DNA binding) level. 相似文献
16.
17.
18.
Li K.; Neufer P. D.; Williams R. S. 《American journal of physiology. Cell physiology》1995,269(5):C1265
19.
Regulation of RAD54- and RAD52-lacZ gene fusions in Saccharomyces cerevisiae in response to DNA damage. 总被引:19,自引:7,他引:19 下载免费PDF全文
The RAD52 and RAD54 genes in the yeast Saccharomyces cerevisiae are involved in both DNA repair and DNA recombination. RAD54 has recently been shown to be inducible by X-rays, while RAD52 is not. To further investigate the regulation of these genes, we constructed gene fusions using 5' regions upstream of the RAD52 and RAD54 genes and a 3'-terminal fragment of the Escherichia coli beta-galactosidase gene. Yeast transformants with either an integrated or an autonomously replicating plasmid containing these fusions expressed beta-galactosidase activity constitutively. In addition, the RAD54 gene fusion was inducible in both haploid and diploid cells in response to the DNA-damaging agents X-rays, UV light, and methyl methanesulfonate, but not in response to heat shock. The RAD52-lacZ gene fusion showed little or no induction in response to X-ray or UV radiation nor methyl methanesulfonate. Typical induction levels for RAD54 in cells exposed to such agents were from 3- to 12-fold, in good agreement with previous mRNA analyses. When MATa cells were arrested in G1 with alpha-factor, RAD54 was still inducible after DNA damage, indicating that the observed induction is independent of the cell cycle. Using a yeast vector containing the EcoRI structural gene fused to the GAL1 promoter, we showed that double-strand breaks alone are sufficient in vivo for induction of RAD54. 相似文献