首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a general multiplatform exploratory tool called TreeQ-Vista, designed for presenting functional annotations in a phylogenetic context. Traits, such as phenotypic and genomic properties, are interactively queried from a user-provided relational database with a user-friendly interface which provides a set of tools for users with or without SQL knowledge. The query results are projected onto a phylogenetic tree and can be displayed in multiple color groups. A rich set of browsing, grouping and query tools are provided to facilitate trait exploration, comparison and analysis. AVAILABILITY: The program, detailed tutorial and examples are available online (http:/genome.lbl.gov/vista/TreeQVista).  相似文献   

2.
3.
Calcium serves as a second messenger in various signal transduction pathways in plants. CBL-interacting protein kinases (CIPKs), which have a variety of functions, are involved in calcium signal transduction. Previous, the studies on CIPK family members focused on Arabidopsis and rice. Here, we present a comparative genomic analysis of the CIPK gene family in Arabidopsis and poplar, a model tree species. Twenty-seven potential CIPKs were identified from poplar using genome-wide analysis. Like the CIPK gene family from Arabidopsis, CIPK genes from poplar were also divided into intron-free and intron-harboring groups. In the intron-harboring group, the intron distribution of CIPKs is rather conserved during the genome evolutionary process. Many homologous gene pairs were found in the CIPK gene family, indicating duplication events might contribute to the amplification of this gene family. The phylogenetic comparison of CIPKs in combination with intron distribution analysis revealed that CIPK genes from both Arabidopsis and poplar might have an ancient origin, which formed earlier than the separation of these two eudicot species. Our genomic and bioinformatic analysis will provide an important foundation for further functional dissection of the CBL-CIPK signaling network in poplars. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
The extent to which brain functions are localized or distributed is a foundational question in neuroscience. In the human brain, common fMRI methods such as cluster correction, atlas parcellation, and anatomical searchlight are biased by design toward finding localized representations. Here we introduce the functional searchlight approach as an alternative to anatomical searchlight analysis, the most commonly used exploratory multivariate fMRI technique. Functional searchlight removes any anatomical bias by grouping voxels based only on functional similarity and ignoring anatomical proximity. We report evidence that visual and auditory features from deep neural networks and semantic features from a natural language processing model, as well as object representations, are more widely distributed across the brain than previously acknowledged and that functional searchlight can improve model-based similarity and decoding accuracy. This approach provides a new way to evaluate and constrain computational models with brain activity and pushes our understanding of human brain function further along the spectrum from strict modularity toward distributed representation.  相似文献   

5.
KEGG: kyoto encyclopedia of genes and genomes   总被引:85,自引:3,他引:82       下载免费PDF全文
KEGG (Kyoto Encyclopedia of Genes and Genomes) is a knowledge base for systematic analysis of gene functions, linking genomic information with higher order functional information. The genomic information is stored in the GENES database, which is a collection of gene catalogs for all the completely sequenced genomes and some partial genomes with up-to-date annotation of gene functions. The higher order functional information is stored in the PATHWAY database, which contains graphical representations of cellular processes, such as metabolism, membrane transport, signal transduction and cell cycle. The PATHWAY database is supplemented by a set of ortholog group tables for the information about conserved subpathways (pathway motifs), which are often encoded by positionally coupled genes on the chromosome and which are especially useful in predicting gene functions. A third database in KEGG is LIGAND for the information about chemical compounds, enzyme molecules and enzymatic reactions. KEGG provides Java graphics tools for browsing genome maps, comparing two genome maps and manipulating expression maps, as well as computational tools for sequence comparison, graph comparison and path computation. The KEGG databases are daily updated and made freely available (http://www. genome.ad.jp/kegg/).  相似文献   

6.
7.
Chromatin composition differs across the genome, with distinct compositions characterizing regions associated with different properties and functions. Whereas many histone modifications show local enrichment over genes or regulatory elements, marking can also span large genomic intervals defining broad chromatin domains. Here we highlight structural and functional features of chromatin domains marked by histone modifications, with a particular emphasis on the potential roles of H3K27 methylation domains in the organization and regulation of genome activity in metazoans.  相似文献   

8.
The University of California Santa Cruz (UCSC) Genome Bioinformatics website consists of a suite of free, open-source, on-line tools that can be used to browse, analyze, and query genomic data. These tools are available to anyone who has an Internet browser and an interest in genomics. The website provides a quick and easy-to-use visual display of genomic data. It places annotation tracks beneath genome coordinate positions, allowing rapid visual correlation of different types of information. Many of the annotation tracks are submitted by scientists worldwide; the others are computed by the UCSC Genome Bioinformatics group from publicly available sequence data. It also allows users to upload and display their own experimental results or annotation sets by creating a custom track. The suite of tools, downloadable data files, and links to documentation and other information can be found at http://genome.ucsc.edu/.  相似文献   

9.
Whole genome amplification and sequencing of single microbial cells enables genomic characterization without the need of cultivation 1-3. Viruses, which are ubiquitous and the most numerous entities on our planet 4 and important in all environments 5, have yet to be revealed via similar approaches. Here we describe an approach for isolating and characterizing the genomes of single virions called ''Single Virus Genomics'' (SVG). SVG utilizes flow cytometry to isolate individual viruses and whole genome amplification to obtain high molecular weight genomic DNA (gDNA) that can be used in subsequent sequencing reactions.  相似文献   

10.
Similarity Plot (S-plot) is a Windows-based application for large-scale comparisons and 2-dimensional visualization of compositional similarities between genomic sequences. This application combines 2 approaches widely used in genomics: window analysis of statistical characteristics along genomes and dot-plot visual representation. S-plot is effective in identifying highly similar regions between genomes as well as regions with unusual compositional properties (RUCPs) within a single genome, which may be indicative of horizontal gene transfer or of locus-specific selective forces. We use S-plot to identify regions that may have originated through horizontal gene transfer through a 2-step approach, by first comparing a genomic sequence to itself and, subsequently, comparing it to the genomic sequence of a closely related taxon. Moreover, by comparing these suspect sequences to one another, we can estimate a minimum number of sources for these putative xenologous sequences. We illustrate the uses of S-plot in a comparison involving Escherichia coli K12 and E. coli O157:H7. In O157:H7, we found 145 regions that have most probably originated through horizontal gene transfer. By using S-plot to compare each of these regions with 277 completely sequenced prokaryotic genomes, 1 sequence was found to have similar compositional properties to the Yersinia pseudotuberculosis genome, indicating a transfer from a Yersinia or Yersinia relative. Based upon our analysis of RUCPs in O157:H7, we infer that there were at least 53 sources of horizontally transferred sequences.  相似文献   

11.
Data summarization and triage is one of the current top challenges in visual analytics. The goal is to let users visually inspect large data sets and examine or request data with particular characteristics. The need for summarization and visual analytics is also felt when dealing with digital representations of DNA sequences. Genomic data sets are growing rapidly, making their analysis increasingly more difficult, and raising the need for new, scalable tools. For example, being able to look at very large DNA sequences while immediately identifying potentially interesting regions would provide the biologist with a flexible exploratory and analytical tool. In this paper we present a new concept, the “information profile”, which provides a quantitative measure of the local complexity of a DNA sequence, independently of the direction of processing. The computation of the information profiles is computationally tractable: we show that it can be done in time proportional to the length of the sequence. We also describe a tool to compute the information profiles of a given DNA sequence, and use the genome of the fission yeast Schizosaccharomyces pombe strain 972 h and five human chromosomes 22 for illustration. We show that information profiles are useful for detecting large-scale genomic regularities by visual inspection. Several discovery strategies are possible, including the standalone analysis of single sequences, the comparative analysis of sequences from individuals from the same species, and the comparative analysis of sequences from different organisms. The comparison scale can be varied, allowing the users to zoom-in on specific details, or obtain a broad overview of a long segment. Software applications have been made available for non-commercial use at http://bioinformatics.ua.pt/software/dna-at-glance.  相似文献   

12.
Metagenomics and single-cell genomics have enabled the discovery of relevant uncultured microbes. Recently, single-virus genomics (SVG), although still in an incipient stage, has opened new avenues in viral ecology by allowing the sequencing of one single virus at a time. The investigation of methodological alternatives and optimization of existing procedures for SVG is paramount to deliver high-quality genomic data. We report a sequencing dataset of viral single-amplified genomes (vSAGs) from cultured and uncultured viruses obtained by applying different conditions in each SVG step, from viral preservation and novel whole-genome amplification (WGA) to sequencing platforms and genome assembly. Sequencing data showed that cryopreservation and mild fixation were compatible with WGA, although fresh samples delivered better genome quality data. The novel TruPrime WGA, based on primase-polymerase features, and WGA-X employing a thermostable phi29 polymerase, were proven to be with sufficient sensitivity in SVG. The Oxford Nanopore (ON) sequencing platform did not provide a significant improvement of vSAG assembly compared to Illumina alone. Finally, the SPAdes assembler performed the best. Overall, our results represent a valuable genomic dataset that will help to standardized and advance new tools in viral ecology.  相似文献   

13.
Despite known heritability, the complex genetic architecture of bipolar disorder (likely including trait, locus and allelic heterogeneity, as well as genetic interactions) has confounded genetic discovery for many years. Even modern day whole genome association studies (WGAS) using over half a million common SNPs have implicated only a handful of genes at the genomewide level. Temporally coincident with this series of WGAS, a host of pathways-based analyses (PBAs) have emerged as novel computational approaches in the examination of large-scale datasets, but thus far rarely have been applied to WGAS data in psychiatric disorders. Here, we report a series of PBAs conducted using exploratory visual analysis, an analytic and visualization software tool for examining genomic data, to examine results from the National Institutes of Mental Health and Wellcome-Trust Case Control Consortium WGAS in bipolar disorder. Consistent with a host of prior linkage findings, some candidate gene association studies, and recent WGAS, our strongest findings suggest involvement of ion channel structural and regulatory genes, including voltage-gated ion channels and the broader ion channel group that comprises both voltage- and ligand-gated channels. Moreover, we found only modest overlap in the particular genes driving the significance of these gene sets across the analyses. This observation strongly suggests that variation in ion channel genes, as a class of genes, may contribute to the susceptibility of bipolar disorder and that heterogeneity may figure prominently in the genetic architecture of this susceptibility. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
《Organogenesis》2013,9(2):42-47
Rapid progress in genome research creates a wealth of information on the functional annotation of mammalian genome sequences. However, as we accumulate large amounts of scientific information we are facing problems of how to integrate and relate the data produced by various genomic approaches. Here, we propose a novel concept of an organ atlas where diverse data from expression maps to histological findings to mutant phenotypes can be queried, compared and visualized in the context of a three dimensional reconstruction of the organ. We will seek proof of concept for the organ atlas by elucidating genetic pathways involved in development and pathophysiology of the kidney. Such a kidney atlas may provide a paradigm for a new systems-biology approach in functional genome research aimed at understanding the genetic basis of organ development, physiology and disease.  相似文献   

15.
MOTIVATION: As more whole genome sequences become available, comparing multiple genomes at the sequence level can provide insight into new biological discovery. However, there are significant challenges for genome comparison. The challenge includes requirement for computational resources owing to the large volume of genome data. More importantly, since the choice of genomes to be compared is entirely subjective, there are too many choices for genome comparison. For these reasons, there is pressing need for bioinformatics systems for comparing multiple genomes where users can choose genomes to be compared freely. RESULTS: PLATCOM (Platform for Computational Comparative Genomics) is an integrated system for the comparative analysis of multiple genomes. The system is built on several public databases and a suite of genome analysis applications are provided as exemplary genome data mining tools over these internal databases. Researchers are able to visually investigate genomic sequence similarities, conserved gene neighborhoods, conserved metabolic pathways and putative gene fusion events among a set of selected multiple genomes. AVAILABILITY: http://platcom.informatics.indiana.edu/platcom  相似文献   

16.
17.
Rapid progress in genome research creates a wealth of information on the functional annotation of mammalian genome sequences. However, as we accumulate large amounts of scientific information we are facing problems of how to integrate and relate the data produced by various genomic approaches. Here, we propose the novel concept of an organ atlas where diverse data from expression maps to histological findings to mutant phenotypes can be queried, compared and visualized in the context of a three-dimensional reconstruction of the organ. We will seek proof of concept for the organ atlas by elucidating genetic pathways involved in development and pathophysiology of the kidney. Such a kidney atlas may provide a paradigm for a new systems-biology approach in functional genome research aimed at understanding the genetic bases of organ development, physiology and disease.Key Words: EuReGene, kidney, genome, development, pathophysiology, genetics  相似文献   

18.
DNA base composition is a fundamental genome feature. However, the evolutionary pattern of base composition and its potential causes have not been well understood. Here, we report findings from comparative analysis of base composition at the whole-genome level across 2210 species, the polymorphic-site level across eight population comparison sets, and the mutation-site level in 12 mutation-tracking experiments. We first demonstrate that base composition follows the individual-strand base equality rule at the genome, chromosome and polymorphic-site levels. More intriguingly, clear separation of base-composition values calculated across polymorphic sites was consistently observed between basal and derived groups, suggesting common underlying mechanisms. Individuals in the derived groups show an A&T-increase/G&C-decrease pattern compared with the basal groups. Spontaneous and induced mutation experiments indicated these patterns of base composition change can emerge across mutation sites. With base-composition across polymorphic sites as a genome phenotype, genome scans with human 1000 Genomes and HapMap3 data identified a set of significant genomic regions enriched with Gene Ontology terms for DNA repair. For three DNA repair genes (BRIP1, PMS2P3 and TTDN), ENCODE data provided evidence for interaction between genomic regions containing these genes and regions containing the significant SNPs. Our findings provide insights into the mechanisms of genome evolution.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号