首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Pseudomonas aeruginosa is known to be a multidrug resistant opportunistic pathogen. Particularly, P. aeruginosa PAO1 polyphosphate kinase mutant (ppk1) is deficient in motility, quorum sensing, biofilm formation and virulence.

Findings

By using Phenotypic Microarrays (PM) we analyzed near 2000 phenotypes of P. aeruginosa PAO1 polyP kinase mutants (ppk1 and ppk2). We found that both ppk mutants shared most of the phenotypic changes and interestingly many of them related to susceptibility toward numerous and different type of antibiotics such as Ciprofloxacin, Chloramphenicol and Rifampicin.

Conclusions

Combining the fact that ppk1 mutants have reduced virulence and are more susceptible to antibiotics, polyP synthesis and particularly PPK1, is a good target for the design of molecules with anti-virulence and anti-persistence properties.

Electronic supplementary material

The online version of this article (doi:10.1186/s40659-015-0012-0) contains supplementary material, which is available to authorized users.  相似文献   

2.

Background

Inorganic polyphosphate (poly P) plays an important role in stress tolerance and virulence in many bacteria. PPK1 is the principal enzyme involved in poly P synthesis, while PPK2 uses poly P to generate GTP, a signaling molecule that serves as an alternative energy source and a precursor for various physiological processes. Campylobacter jejuni, an important cause of foodborne gastroenteritis in humans, possesses homologs of both ppk1 and ppk2. ppk1 has been previously shown to impact the pathobiology of C. jejuni.

Methodology/Principal Findings

Here, we demonstrate for the first time that the deletion of ppk2 in C. jejuni resulted in a significant decrease in poly P-dependent GTP synthesis, while displaying an increased intracellular ATP:GTP ratio. The Δppk2 mutant exhibited a significant survival defect under osmotic, nutrient, aerobic, and antimicrobial stresses and displayed an enhanced ability to form static biofilms. However, the Δppk2 mutant was not defective in poly P and ppGpp synthesis suggesting that PPK2-mediated stress tolerance is not ppGpp-mediated. Importantly, the Δppk2 mutant was significantly attenuated in invasion and intracellular survival within human intestinal epithelial cells as well as in chicken colonization.

Conclusions/Significance

Taken together, we have highlighted the role of PPK2 as a novel pathogenicity determinant that is critical for C. jejuni survival, adaptation, and persistence in the host environments. PPK2 is absent in humans and animals; therefore, can serve as a novel target for therapeutic intervention of C. jejuni infections.  相似文献   

3.
Mycobacteria encode putative class II polyphosphate kinases (PPKs). We report that recombinant PPK2 of Mycobacterium tuberculosis catalyses the synthesis of GTP from GDP using polyphosphate rather than ATP as phosphate donor. Unlike that of PPK1, this is the favoured reaction of PPK2. The sites of autophosphorylation, H115 and H247, as well as G74 were critical for GTP‐synthesizing activity. Compromised survival of a ppk2 knockout (PPK2‐KO) of Mycobacterium smegmatis under heat or acid stress or hypoxia, and the ability of ppk2 of M. tuberculosis to complement this, confirmed that PPK2 plays a role in mycobacterial survival under stress. Intracellular ATP : GTP ratio was higher in PPK2‐KO compared with the wild‐type M. smegmatis, bringing to light a role of PPK2 in regulating the intracellular nucleotide pool. We present evidence that PPK2 does so by interacting with nucleoside diphosphate kinase (Ndk). Pull‐down assays and analysis by surface plasmon resonance demonstrated that the interaction requires G74 of PPK2MTB and 109LET111 of NdkMTB. In summary, we unravel a novel mechanism of regulation of nucleotide pools in mycobacteria. Downregulation of ppk2 impairs survival of M. tuberculosis in macrophages, suggesting that PPK2 plays an important role in the physiology of the bacteria residing within macrophages.  相似文献   

4.
Polyphosphate kinases (PPKs) catalyse the polymerisation and degradation of polyphosphate chains. As a result of this process, PPK produces or consumes energy in the form of ATP. Polyphosphate is a linear molecule that contains tens to hundreds of phosphate residues connected by macroergic bonds, and it appears to be an easily obtainable and rich source of energy from prebiotic times to the present. Notably, polyphosphate is present in the cells of all three domains of life, but PPKs are widely distributed only in Bacteria, as Archaea and Eucarya use various unrelated or “nonhomologous” proteins for energy and metabolic balance. The present study focuses on PPK1 and PPK2 homologues, which have been described to some extent in Bacteria, and the aim was to determine which homologue group, PPK1 or PPK2, is older. Phylogenetic analyses of 109 sequence homologues of Escherichia coli PPK1 and 109 sequence homologues of Pseudomonas aeruginosa PPK2 from 109 bacterial genomes imply that polyphosphate consumption (PPK2) evolved first and that phosphate polymerisation (PPK1) evolved later. Independently, a theory of the trends in amino acid loss and gain also confirms that PPK2 is older than PPK1. According to the results of this study, we propose 68 hypothetical proteins to mark as PPK2 homologues and 3 hypothetical proteins to mark as PPK1 homologues.  相似文献   

5.
Processes for the biological removal of phosphate from wastewater rely on temporary manipulation of bacterial polyphosphate levels by phased environmental stimuli. In E. coli polyphosphate levels are controlled via the polyphosphate‐synthesizing enzyme polyphosphate kinase (PPK1) and exopolyphosphatases (PPX and GPPA), and are temporarily enhanced by PPK1 overexpression and reduced by PPX overexpression. We hypothesised that partitioning PPK1 from cytoplasmic exopolyphosphatases would increase and stabilise E. coli polyphosphate levels. Partitioning was achieved by co‐expression of E. coli PPK1 fused with a microcompartment‐targeting sequence and an artificial operon of Citrobacter freundii bacterial microcompartment genes. Encapsulation of targeted PPK1 resulted in persistent phosphate uptake and stably increased cellular polyphosphate levels throughout cell growth and into the stationary phase, while PPK1 overexpression alone produced temporary polyphosphate increase and phosphate uptake. Targeted PPK1 increased polyphosphate in microcompartments 8‐fold compared with non‐targeted PPK1. Co‐expression of PPX polyphosphatase with targeted PPK1 had little effect on elevated cellular polyphosphate levels because microcompartments retained polyphosphate. Co‐expression of PPX with non‐targeted PPK1 reduced cellular polyphosphate levels. Thus, subcellular compartmentalisation of a polymerising enzyme sequesters metabolic products from competing catabolism by preventing catabolic enzyme access. Specific application of this process to polyphosphate is of potential application for biological phosphate removal.  相似文献   

6.

Background  

Inorganic polyphosphate (polyP), a polymer of tens or hundreds of phosphate residues linked by ATP-like bonds, is found in all organisms and performs a wide variety of functions. PolyP is synthesized in bacterial cells by the actions of polyphosphate kinases (PPK1 and PPK2) and degraded by exopolyphosphatase (PPX). Bacterial cells with polyP deficiencies due to knocking out the ppk1 gene are affected in many structural and important cellular functions such as motility, quorum sensing, biofilm formation and virulence among others. The cause of this pleiotropy is not entirely understood.  相似文献   

7.

Background

An important mechanism of Mycobacterium tuberculosis pathogenesis is the ability to control cell death pathways in infected macrophages: apoptotic cell death is bactericidal, whereas necrotic cell death may facilitate bacterial dissemination and transmission.

Methods

We examine M.tuberculosis control of spontaneous and chemically induced macrophage cell death using automated confocal fluorescence microscopy, image analysis, flow cytometry, plate-reader based vitality assays, and M.tuberculosis strains including H37Rv, and isogenic virulent and avirulent strains of the Beijing lineage isolate GC1237.

Results

We show that bacterial virulence influences the dynamics of caspase activation and the total level of cytotoxicity. We show that the powerful ability of M.tuberculosis to inhibit exogenously stimulated apoptosis is abrogated by loss of virulence. However, loss of virulence did not influence the balance of macrophage apoptosis and necrosis – both virulent and avirulent isogenic strains of GC1237 induced predominantly necrotic cell death compared to H37Rv which induced a higher relative level of apoptosis.

Conclusions

This reveals that macrophage necrosis and apoptosis are independently regulated during M. tuberculosis infection of macrophages. Virulence affects the level of host cell death and ability to inhibit apoptosis but other strain-specific characteristics influence the ultimate mode of host cell death and alter the balance of apoptosis and necrosis.  相似文献   

8.

Background

Targeted and stringent measures of tuberculosis prevention are necessary to achieve the goal of tuberculosis elimination in countries of low tuberculosis incidence.

Methods

We ascertained the knowledge about tuberculosis risk factors and stringency of tuberculosis prevention measures by a standardized questionnaire among physicians in Germany involved in the care of individuals from classical risk groups for tuberculosis.

Results

510 physicians responded to the online survey. Among 16 risk factors immunosuppressive therapy, HIV-infection and treatment with TNF-antagonist were thought to be the most important risk factors for the development of tuberculosis in Germany. Exposure to a patient with tuberculosis ranked on the 10th position. In the event of a positive tuberculin-skin-test or interferon-γ release assay only 50%, 40%, 36% and 25% of physicians found that preventive chemotherapy was indicated for individuals undergoing tumor necrosis factor-antagonist therapy, close contacts of tuberculosis patients, HIV-infected individuals and migrants, respectively.

Conclusions

A remarkably low proportion of individuals with latent infection with Mycobacterium tuberculosis belonging to classical risk groups for tuberculosis are considered candidates for preventive chemotherapy in Germany. Better knowledge about the risk for tuberculosis in different groups and more stringent and targeted preventive interventions will probably be necessary to achieve tuberculosis elimination in Germany.  相似文献   

9.
In this review, we discuss the following two subjects: 1) the physiological function of polyphosphate (poly(P)) as a regulatory factor for gene expression in Escherichia coli, and 2) novel functions of E. coli polyphosphate kinase (PPK) and their applications. With regard to the first subject, it has been shown that E. coli cells in which yeast exopolyphosphatase (poly(P)ase), PPX1, was overproduced reduced resistance to H2O2 and heat shock as did a mutant whose polyphosphate kinase gene is disrupted. Sensitivity to H2O2 and heat shock evinced by cells that overproduce PPX1 is attributed to depressed levels of rpoS expression. Since rpoS is a central element in a regulatory network that governs the expression of stationary-phase-induced genes, poly(P) affects the expression of many genes through controlling rpoS expression. Furthermore, poly(P) is also involved in expression of other stress-inducible genes that are not directly regulated by rpoS. The second subject includes the application of novel functions of PPK for nucleoside triphosphate (NTP) regeneration. Recently E. coli PPK has been found to catalyze the kination of not only ADP but also other nucleoside diphosphates using poly(P) as a phospho-donor, yielding NTPs. This nucleoside diphosphate kinase-like activity of PPK was confirmed to be available for NTP regeneration essential for enzymatic oligosaccharide synthesis using the sugar nucleotide cycling method. PPK has also been found to express a poly(P):AMP phosphotransferase activity by coupling with adenylate kinase (ADK) in E. coli. The ATP-regeneration system consisting of ADK, PPK, and poly(P) was shown to be promising for practical utilization of poly(P) as ATP substitute.  相似文献   

10.
Dong H  Shi L  Zhao X  Sang B  Lv B  Liu Z  Wan K 《PloS one》2012,7(3):e33904

Background

Tuberculosis (TB) is a serious health problem in Tibet where Tibetans are the major ethnic group. Although genotyping of Mycobacterium tuberculosis (M. tuberculosis) isolates is a valuable tool for TB control, our knowledge of population structure of M. tuberculosis circulating in Tibet is limited.

Methodology/Principal Findings

In our study, a total of 576 M. tuberculosis isolates from Tibetans in Tibet, China, were analyzed via spoligotyping and 24-locus MIRU-VNTR. The Beijing genotype was the most prevalent family (90.63%, n = 522). Shared-type (ST) 1 was the most dominant genotype (88.89%, n = 512). We found that there was no association between the Beijing genotype and sex, age and treatment status. In this sample collection, 7 of the 24 MIRU-VNTR loci were highly or moderately discriminative according to their Hunter-Gaston discriminatory index. An informative set of 12 loci had similar discriminatory power with 24 loci set.

Conclusions/Significance

The population structure of M. tuberculosis isolates in Tibetans is homogeneous and dominated by Beijing genotype. The analysis of 24-locus MIRU-VNTR data might be useful to select appropriate VNTR loci for the genotyping of M. tuberculosis.  相似文献   

11.

Background

An IFN-γ response to M. tuberculosis-specific antigens is an effective biomarker for M. tuberculosis infection but it cannot discriminate between latent TB infection and active TB disease. Combining a number of cytokine/chemokine responses to M. tuberculosis antigens may enable differentiation of latent TB from active disease.

Methods

Asymptomatic recently-exposed individuals (spouses of TB patients) were recruited and tuberculin skin tested, bled and followed-up for two years. Culture supernatants, from a six-day culture of diluted whole blood samples stimulated with M. tuberculosis-derived PPD or ESAT-6, were measured for IFN-γ, IL-10, IL-13, IL-17, TNF-α and CXCL10 using cytokine ELISAs. In addition, 15 patients with sputum smear-positive pulmonary TB were recruited and tested.

Results

Spouses with positive IFN-γ responses to M. tuberculosis ESAT-6 (>62.5 pg/mL) and TB patients showed high production of IL-17, CXCL10 and TNF-α. Higher production of IL-10 and IL-17 in response to ESAT-6 was observed in the spouses compared with TB patients while the ratios of IFN-γ/IL-10 and IFN-γ/IL-17 in response to M. tuberculosis-derived PPD were significantly higher in TB patients compared with the spouses. Tuberculin skin test results did not correlate with cytokine responses.

Conclusions

CXCL10 and TNF-α may be used as adjunct markers alongside an IFN-γ release assay to diagnose M. tuberculosis infection, and IL-17 and IL-10 production may differentiate individuals with LTBI from active TB.  相似文献   

12.

Background

The Mycobacterium tuberculosis genome encodes two peptide transporters encoded by Rv3665c-Rv3662c and Rv1280c-Rv1283c. Both belong to the family of ABC transporters containing two nucleotide-binding subunits, two integral membrane proteins and one substrate-binding polypeptide. However, little is known about their functions in M. tuberculosis. Here we report functional characterization of the Rv1280c-Rv1283c-encoded transporter and its substrate-binding polypeptide OppAMTB.

Methodology/Principal Findings

OppAMTB was capable of binding the tripeptide glutathione and the nonapeptide bradykinin, indicative of a somewhat broad substrate specificity. Amino acid residues G109, N110, N230, D494 and F496, situated at the interface between domains I and III of OppA, were required for optimal peptide binding. Complementaton of an oppA knockout mutant of M. smegmatis with OppAMTB confirmed the role of this transporter in importing glutathione and the importance of the aforesaid amino acid residues in peptide transport. Interestingly, this transporter regulated the ability of M. tuberculosis to lower glutathione levels in infected compared to uninfected macrophages. This ability was partly offset by inactivation of oppD. Concomitantly, inactivation of oppD was associated with lowered levels of methyl glyoxal in infected macrophages and reduced apoptosis-inducing ability of the mutant. The ability to induce the production of the cytokines IL-1β, IL-6 and TNF-α was also compromised after inactivation of oppD.

Conclusions

Taken together, these studies uncover the novel observations that this peptide transporter modulates the innate immune response of macrophages infected with M. tuberculosis.  相似文献   

13.

Background

It has been hypothesized that the virulence of lab-passaged Mycobacterium tuberculosis and recombinant M. tuberculosis mutants might be reduced due to multiple in vitro passages, and that virulence might be augmented by passage of these strains through mice before quantitative virulence testing in the mouse or guinea pig aerosol models.

Methodology/Principal Findings

By testing three M. tuberculosis H37Rv samples, one deletion mutant, and one recent clinical isolate for survival by the quantitative organ CFU counting method in mouse or guinea pig aerosol or intravenous infection models, we could discern no increase in bacterial fitness as a result of passaging of M. tuberculosis strains in mice prior to quantitative virulence testing in two animal models. Surface lipid expression as assessed by neutral red staining and thin-layer chromatography for PDIM analysis also failed to identify virulence correlates.

Conclusions/Significance

These results indicate that animal passaging of M. tuberculosis strains prior to quantitative virulence testing in mouse or guinea pig models does not enhance or restore potency to strains that may have lost virulence due to in vitro passaging. It is critical to verify virulence of parental strains before genetic manipulations are undertaken and comparisons are made.  相似文献   

14.

Background

T-cell responses against dormancy-, resuscitation-, and reactivation-associated antigens of Mycobacterium tuberculosis are candidate biomarkers of latent infection in humans.

Methodology/Principal Findings

We established an assay based on two rounds of in vitro restimulation and intracellular cytokine analysis that detects T-cell responses to antigens expressed during latent M. tuberculosis infection. Comparison between active pulmonary tuberculosis (TB) patients and healthy latently M. tuberculosis-infected donors (LTBI) revealed significantly higher T-cell responses against 7 of 35 tested M. tuberculosis latency-associated antigens in LTBI. Notably, T cells specific for Rv3407 were exclusively detected in LTBI but not in TB patients. The T-cell IFNγ response against Rv3407 in individual donors was the most influential factor in discrimination analysis that classified TB patients and LTBI with 83% accuracy using cross-validation. Rv3407 peptide pool stimulations revealed distinct candidate epitopes in four LTBI.

Conclusions

Our findings further support the hypothesis that the latency-associated antigens can be exploited as biomarkers for LTBI.  相似文献   

15.

Background

Members of the Mps1 kinase family play an essential and evolutionarily conserved role in the spindle assembly checkpoint (SAC), a surveillance mechanism that ensures accurate chromosome segregation during mitosis. Human Mps1 (hMps1) is highly phosphorylated during mitosis and many phosphorylation sites have been identified. However, the upstream kinases responsible for these phosphorylations are not presently known.

Methodology/Principal Findings

Here, we identify 29 in vivo phosphorylation sites in hMps1. While in vivo analyses indicate that Aurora B and hMps1 activity are required for mitotic hyper-phosphorylation of hMps1, in vitro kinase assays show that Cdk1, MAPK, Plk1 and hMps1 itself can directly phosphorylate hMps1. Although Aurora B poorly phosphorylates hMps1 in vitro, it positively regulates the localization of Mps1 to kinetochores in vivo. Most importantly, quantitative mass spectrometry analysis demonstrates that at least 12 sites within hMps1 can be attributed to autophosphorylation. Remarkably, these hMps1 autophosphorylation sites closely resemble the consensus motif of Plk1, demonstrating that these two mitotic kinases share a similar substrate consensus.

Conclusions/Significance

hMps1 kinase is regulated by Aurora B kinase and its autophosphorylation. Analysis on hMps1 autophosphorylation sites demonstrates that hMps1 has a substrate preference similar to Plk1 kinase.  相似文献   

16.
Polyphosphate kinase (PPK), the principal enzyme required for the synthesis of inorganic polyphosphate (polyP) from ATP, also exhibits other enzymatic activities, which differ significantly in their biochemical optima and responses to chemical agents. These several activities include: polyP synthesis (forward reaction), nATP --> polyP(n) + nADP (Equation 1); ATP synthesis from polyP (reverse reaction), ADP + polyP(n) --> ATP + polyP(n - 1) (Equation 2); general nucleoside-diphosphate kinase, GDP + polyP(n) --> GTP + polyP(n - 1) (Equation 3); linear guanosine 5'-tetraphosphate (ppppG) synthesis, GDP + polyP(n) --> ppppG + polyP(n - 2) (Equation 4); and autophosphorylation, PPK + ATP --> PPK-P + ADP (Equation 5). The Mg(2+) optima are 5, 2, 1, and 0.2 mM, respectively, for the activities in Equations 1, 2, 3, and 4. Inorganic pyrophosphate inhibits the activities in Equations 1 and 3 but stimulates that in Equation 4. The kinetics of the activities in Equations 1, 2, and 3 are highly processive, whereas the transfer of a pyrophosphoryl group from polyP to GDP (Equation 4) is distributive and demonstrates a rapid equilibrium, random Bi-Bi catalytic mechanism. Radiation target analysis revealed that the principal functional unit of the homotetrameric PPK is a dimer. Exceptions are a trimer for the synthesis of ppppG (Equation 4) and a tetrameric state for the autophosphorylation of PPK (Equation 5) at low ATP concentrations. Thus, the diverse functions of this enzyme involve different subunit organizations and conformations. The highly conserved homology of PPK among 18 microorganisms was used to determine important residues and conserved regions by alanine substitution, by site-directed mutagenesis, and by deletion mutagenesis. Of 46 single-site mutants, seven exhibit none of the five enzymatic activities; in one mutant, ATP synthesis from polyP is reduced relative to GTP synthesis. Among deletion mutants, some lost all five PPK activities, but others retained partial activity for some reactions but not for others.  相似文献   

17.
L Fan  HP Xiao  ZY Hu  JD Ernst 《PloS one》2012,7(8):e42716

Objective

To determine the variation of IFN-γ and IL-17 responses to M. tuberculosis antigens in healthy TST+ humans.

Methods

We isolated peripheral blood mononuclear cells from 21 TST+ healthy adults, stimulated them with phytohemagglutinin (PHA), PPD, Ag85B, ESAT-6, and live M. bovis BCG, and assayed IFN-γ and IL-17 secretion by ELISA in supernatants after 24 or 72 hours of incubation respectively.

Results

As in other studies, we found a wide range of IFN-γ responses to M. tuberculosis antigens; the variation significantly exceeded that observed in the same donors to the polyclonal T cell stimulus, phytohemagglutinin (PHA). In addition, we assayed IL-17 secretion in response to the same stimuli, and found less subject-to-subject variation. Analysis of the ratio of IFN-γ to IL-17 secretion on a subject-to-subject basis also revealed a wide range, with the majority of results distributed in a narrow range, and a minority with extreme results all of which were greater than that in the majority of subjects. The data suggest that study of exceptional responses to M. tuberculosis antigens may reveal immunologic correlates with specific outcomes of M. tuberculosis infection.

Conclusion

Variation of IFNγ and IFN-γ/IL-17 responses to mycobacterial antigens exceeds that of responses to the polyclonal stimulus, PHA, in TST positive healthy humans. This indicates a quantitative spectrum of human immune responses to infection with M. tuberculosis. Since the outcome of human infection with M. tuberculosis varies greatly, systematic study of multiple immune responses to multiple antigens is likely to reveal correlations between selected immune responses and the outcomes of infection.  相似文献   

18.

Background

Mycobacterium tuberculosis is the principal etiologic agent of human tuberculosis. It has no environmental reservoir and is believed to have co-evolved with its host over millennia. This is supported by skeletal evidence of the disease in early humans, and inferred from M. tuberculosis genomic analysis. Direct examination of ancient human remains for M. tuberculosis biomarkers should aid our understanding of the nature of prehistoric tuberculosis and the host/pathogen relationship.

Methodology/Principal Findings

We used conventional PCR to examine bone samples with typical tuberculosis lesions from a woman and infant, who were buried together in the now submerged site of Atlit-Yam in the Eastern Mediterranean, dating from 9250-8160 years ago. Rigorous precautions were taken to prevent contamination, and independent centers were used to confirm authenticity of findings. DNA from five M tuberculosis genetic loci was detected and had characteristics consistent with extant genetic lineages. High performance liquid chromatography was used as an independent method of verification and it directly detected mycolic acid lipid biomarkers, specific for the M. tuberculosis complex.

Conclusions/Significance

Human tuberculosis was confirmed by morphological and molecular methods in a population living in one of the first villages with evidence of agriculture and animal domestication. The widespread use of animals was not a source of infection but may have supported a denser human population that facilitated transmission of the tubercle bacillus. The similarity of the M. tuberculosis genetic signature with those of today gives support to the theory of a long-term co-existence of host and pathogen.  相似文献   

19.
Polyphosphate is ubiquitous and has a variety of biochemical functions. Among polyphosphate quantification methods, an enzymatic assay using Escherichia coli polyphosphate kinase (PPK), in which polyphosphate is converted to adenosine 5'-triphosphate and quantified by luciferase assay, is the most specific and most sensitive. However, chain-length specificity of the assay has not been analyzed in detail so far. Ion chromatography equipped with an on-line hydroxide eluent generator enabled us to analyze polyphosphate up to 50 inorganic phosphate (P(i)) residues, and we employed this method to investigate the chain-length specificity of PPK in this study. Several fractions of short-chain polyphosphate were prepared by electrophoresis, and the chain-length distribution was analyzed before and after 1-6 h PPK reaction by ion chromatography. Polyphosphates longer than 23 P(i) residues were processed by PPK completely after 1 h incubation, but complete processing of those between 11 and 22 P(i) residues required 6h incubation. Limited processing of polyphosphates of 10 P(i) residues or shorter were observed even after 6h incubation. Metachromasy of Toluidine blue O, an alternative method for polyphosphate quantification, showed broader chain-length specificity although it was not as sensitive as the enzymatic assay. Combination of these two methods would be practically applicable to analysis of polyphosphate dynamics in living organisms.  相似文献   

20.

Background

Mycobacterium tuberculosis continues to kill more people than any other bacterium. Although its archetypal host cell is the macrophage, it also enters, and survives within, dendritic cells (DCs). By modulating the behaviour of the DC, M. tuberculosis is able to manipulate the host’s immune response and establish an infection. To identify the M. tuberculosis genes required for survival within DCs we infected primary human DCs with an M. tuberculosis transposon library and identified mutations with a reduced ability to survive.

Results

Parallel sequencing of the transposon inserts of the surviving mutants identified a large number of genes as being required for optimal intracellular fitness in DCs. Loci whose mutation attenuated intracellular survival included those involved in synthesising cell wall lipids, not only the well-established virulence factors, pDIM and cord factor, but also sulfolipids and PGL, which have not previously been identified as having a direct virulence role in cells. Other attenuated loci included the secretion systems ESX-1, ESX-2 and ESX-4, alongside many PPE genes, implicating a role for ESX-5. In contrast the canonical ESAT-6 family of ESX substrates did not have intra-DC fitness costs suggesting an alternative ESX-1 associated virulence mechanism. With the aid of a gene-nutrient interaction model, metabolic processes such as cholesterol side chain catabolism, nitrate reductase and cysteine-methionine metabolism were also identified as important for survival in DCs.

Conclusion

We conclude that many of the virulence factors required for survival in DC are shared with macrophages, but that survival in DCs also requires several additional functions, such as cysteine-methionine metabolism, PGLs, sulfolipids, ESX systems and PPE genes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1569-2) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号