首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Plant species generate specific soil communities that feedback on plant growth and competition. These feedbacks have been implicated in plant community composition and dispersion. We used Lactuca sativa and its wild progenitor Lactuca serriola to test the hypotheses that separate Lactuca species generate unique soil communities and that these soil communities differentially influence host, and neighboring, plant growth and competition. We grew each Lactuca in competition with the other, in sterile and non-sterile soils. We then examined the growth of each Lactuca species in sterile, non-sterile, and preconditioned soil. Finally, we used TRFLP techniques to explore whether the two Lactuca species generate significantly different bacterial communities in their rhizosphere soils. L. sativa proved to be the stronger competitor of the two species. However, sterilization increased the competitive effect of L. serriola background competitors. The growth experiment showed a significant effect on plant species, soil treatment, and the interaction of the two. Preconditioning soil caused reduced growth in both Lactuca species. Only L. serriola showed significantly increased growth in sterile soils. Our TRFLP analysis showed that the L. sativa soil community was significantly less diverse and that soil preconditioning had the largest impact on the community composition. These results show that Lactuca serriola’s rhizosphere communities generate a stronger negative feedback for plant growth than do the communities associated with L. sativa. Our study suggests that selection for plants that are able to grow in dense monoculture may have released Lactuca from species-specific negative soil feedbacks. This has important implications for both agriculture and the evolution of invasive plant species.  相似文献   

2.
The high-throughput phenotypic analysis of Arabidopsis thaliana collections requires methodological progress and automation. Methods to impose stable and reproducible soil water deficits are presented and were used to analyse plant responses to water stress. Several potential complications and methodological difficulties were identified, including the spatial and temporal variability of micrometeorological conditions within a growth chamber, the difference in soil water depletion rates between accessions and the differences in developmental stage of accessions the same time after sowing. Solutions were found. Nine accessions were grown in four experiments in a rigorously controlled growth-chamber equipped with an automated system to control soil water content and take pictures of individual plants. One accession, An1, was unaffected by water deficit in terms of leaf number, leaf area, root growth and transpiration rate per unit leaf area. Methods developed here will help identify quantitative trait loci and genes involved in plant tolerance to water deficit.  相似文献   

3.
Lohe AR  Perotti E 《Planta》2012,236(2):371-385
Arabidopsis thaliana and Boechera belong to different tribes of the Brassicaceae and last shared a common ancestor 13-35 million years ago. A. thaliana reproduces sexually but some Boechera accessions reproduce by apomixis (asexual reproduction by seed). The two species are reproductively isolated, preventing introgression of the trait(s) controlling apomixis from Boechera into A. thaliana and their molecular characterisation. To identify if "escapers" from such hybridisation barriers exist, we crossed diploid or tetraploid A. thaliana mothers carrying a conditional male sterile mutation with a triploid Boechera apomict. These cross-pollinations generated zygotes and embryos. Most aborted or suffered multiple developmental defects at all stages of growth, but some seed matured and germinated. Seedlings grew slowly but eventually some developed into mature plants that were novel synthetic allopolyploid hybrids. With one exception, intertribal hybrids contained three Boechera plus either one or two A. thaliana genomes (depending on maternal ploidy) and were male and female sterile. The exception was a semi-fertile, sexual partial hybrid with one Boechera plus two A. thaliana genomes. The synthesis of "escapers" that survive rigorous early developmental challenges in crosses between A. thaliana and Boechera demonstrates that the inviability form of postzygotic reproductive isolation separating these distantly related species is not impenetrable. The recovery of a single semi-fertile partial hybrid also demonstrates that hybrid sterility, another form of postzygotic reproductive isolation, can be overcome between these species.  相似文献   

4.
Understanding the mechanisms of community coexistence and ecosystem functioning may help to counteract the current biodiversity loss and its potentially harmful consequences. In recent years, plant–soil feedback that can, for example, be caused by below‐ground microorganisms has been suggested to play a role in maintaining plant coexistence and to be a potential driver of the positive relationship between plant diversity and ecosystem functioning. Most of the studies addressing these topics have focused on the species level. However, in addition to interspecific interactions, intraspecific interactions might be important for the structure of natural communities. Here, we examine intraspecific coexistence and intraspecific diversity effects using 10 natural accessions of the model species Arabidopsis thaliana (L.) Heynh. We assessed morphological intraspecific diversity by measuring several above‐ and below‐ground traits. We performed a plant–soil feedback experiment that was based on these trait differences between the accessions in order to determine whether A. thaliana experiences feedback at intraspecific level as a result of trait differences. We also experimentally tested the diversity–productivity relationship at intraspecific level. We found strong differences in above‐ and below‐ground traits between the A. thaliana accessions. Overall, plant–soil feedback occurred at intraspecific level. However, accessions differed in the direction and strength of this feedback: Some accessions grew better on their own soils, some on soils from other accessions. Furthermore, we found positive diversity effects within A. thaliana: Accession mixtures produced a higher total above‐ground biomass than accession monocultures. Differences between accessions in their feedback response could not be explained by morphological traits. Therefore, we suggest that they might have been caused by accession‐specific accumulated soil communities, by root exudates, or by accession‐specific resource use based on genetic differences that are not expressed in morphological traits. Synthesis. Our results provide some of the first evidence for intraspecific plant–soil feedback and intraspecific overyielding. These findings may have wider implications for the maintenance of variation within species and the importance of this variation for ecosystem functioning. Our results highlight the need for an increased focus on intraspecific processes in plant diversity research to fully understand the mechanisms of coexistence and ecosystem functioning.  相似文献   

5.
6.
7.
The rhizosphere is strongly influenced by plant-derived phytochemicals exuded by roots and plant species exert a major selective force for bacteria colonizing the root-soil interface. We have previously shown that rhizobacterial recruitment is tightly regulated by plant genetics, by showing that natural variants of Arabidopsis thaliana support genotype-specific rhizobacterial communities while also releasing a unique blend of exudates at six weeks post-germination. To further understand how exudate release is controlled by plants, changes in rhizobacterial assemblages of two Arabidopsis accessions, Cvi and Ler where monitored throughout the plants'' life cycle. Denaturing gradient gel electrophoresis (DGGE) fingerprints revealed that bacterial communities respond to plant derived factors immediately upon germination in an accession-specific manner. Rhizobacterial succession progresses differently in the two accessions in a reproducible manner. However, as plants age, rhizobacterial and control bulk soil communities converge, indicative of an attenuated rhizosphere effect, which coincides with the expected slow down in the active release of root exudates as plants reach the end of their life cycle. These data strongly suggest that exudation changes during plant development are highly genotype-specific, possibly reflecting the unique, local co-evolutionary communication processes that developed between Arabidopsis accessions and their indigenous microbiota.Key words: rhizobacterial succession, rhizobacterial communities, natural variation, root exudates, Arabidopsis accessions  相似文献   

8.
Accessions of wheat, spinach, lettuce and different Brassica species were tested in greenhouse experiments for reaction to inoculation with two isolates of growth-inhibitory rhizosphere bacteria. Seedlings grown in non-sterile soil were inoculated with bacterial suspension and shoot dry weight was measured after five weeks. Large differences were found between the plant species tested in their average sensitivity to each bacterial isolate, and in the majority of plant species, significant differences were also found between accessions in the response to one or both isolates. These findings suggest that, in addition to the variation between plant species, intraspecific variation in the reaction to deleterious bacteria is a common feature in plants. This supports the hypothesis that plant reaction to rhizosphere bacteria is under genetic control. The results further indicate specificity in the interactions between plants and bacterial isolates, both at the plant species level and at the accession level.  相似文献   

9.
Increased resource availability and feedbacks with soil biota have both been invoked as potential mechanisms of plant invasion. Nitrogen (N) deposition can enhance invasion in some ecosystems, and this could be the result of increased soil N availability as well as shifts in soil biota. In a two-phase, full-factorial greenhouse experiment, we tested effects of N availability and N-impacted soil communities on growth responses of three Mediterranean plant species invasive in California: Bromus diandrus, Centaurea melitensis, and Hirschfeldia incana. In the first phase, plants were grown individually in pots and inoculated with sterile soil, soil from control field plots or soil from high N addition plots, and with or without supplemental N. In the second phase, we grew the same species in soils conditioned in the first phase. We hypothesized growth responses would differ across species due to species-specific relationships with soil biota, but overall increased N availability and N-impacted soil communities would enhance plant growth. In the first phase, Centaurea had the greatest growth response when inoculated with N-impacted soil, while Bromus and Hirschfeldia performed best in low N soil communities. However, in phase two all species exhibited positive growth responses in N-impacted soil communities under high N availability. While species may differ in responses to soil biota and N, growth responses to soils conditioned by conspecifics appear to be most positive in all species under high N availability and/or in soil communities previously impacted by simulated N deposition. Our results suggest N deposition could facilitate invasion due to direct impacts of soil N enrichment on plant growth, as well as through feedbacks with the soil microbial community.  相似文献   

10.
Soil microbes are known to be key drivers of several essential ecosystem processes such as nutrient cycling, plant productivity and the maintenance of plant species diversity. However, how plant species diversity and identity affect soil microbial diversity and community composition in the rhizosphere is largely unknown. We tested whether, over the course of 11 years, distinct soil bacterial communities developed under plant monocultures and mixtures, and if over this time frame plants with a monoculture or mixture history changed in the bacterial communities they associated with. For eight species, we grew offspring of plants that had been grown for 11 years in the same field monocultures or mixtures (plant history in monoculture vs. mixture) in pots inoculated with microbes extracted from the field monoculture and mixture soils attached to the roots of the host plants (soil legacy). After 5 months of growth in the glasshouse, we collected rhizosphere soil from each plant and used 16S rRNA gene sequencing to determine the community composition and diversity of the bacterial communities. Bacterial community structure in the plant rhizosphere was primarily determined by soil legacy and by plant species identity, but not by plant history. In seven of the eight plant species the number of individual operational taxonomic units with increased abundance was larger when inoculated with microbes from mixture soil. We conclude that plant species richness can affect below‐ground community composition and diversity, feeding back to the assemblage of rhizosphere bacterial communities in newly establishing plants via the legacy in soil.  相似文献   

11.
Invasive plant species can modify soils in a way that benefits their fitness more than the fitness of native species. However, it is unclear how competition among plant species alters the strength and direction of plant–soil feedbacks. We tested how community context altered plant–soil feedback between the non-native invasive forb Lespedeza cuneata and nine co-occurring native prairie species. In a series of greenhouse experiments, we grew plants individually and in communities with soils that differed in soil origin (invaded or uninvaded by L. cuneata) and in soils that were live vs. sterilized. In the absence of competition, L. cuneata produced over 60% more biomass in invaded than uninvaded soils, while native species performance was unaffected. The absence of a soil origin effect in sterile soil suggests that the positive plant–soil feedback was caused by differences in the soil biota. However, in the presence of competition, the positive effect of soil origin on L. cuneata growth disappeared. These results suggest that L. cuneata may benefit from positive plant–soil feedback when establishing populations in disturbed landscapes with few interspecific competitors, but does not support the hypothesis that plant–soil feedbacks influence competitive outcomes between L. cuneata and native plant species. These results highlight the importance of considering whether competition influences the outcome of interactions between plants and soils.  相似文献   

12.
13.
A study was conducted to determine the effect of inoculation method and plant growth medium on colonization of sorghum by an endophytic Beauveria bassiana. Colonization of leaves, stems, and roots by B. bassiana was assessed 20-days after application of the fungus. Although B. bassiana established as an endophyte in sorghum leaves, stems, and roots regardless of inoculation method (leaf, seed, or soil inoculation), plant growth medium (sterile soil, non-sterile soil, or vermiculite) apparently influenced colonization rates. Seed inoculation with conidia caused no stem or leaf colonization by the fungus in non-sterile soil but did result in substantial endophytic colonization in vermiculite and sterile soil. Leaf inoculation did not result in root colonization, regardless of plant growth medium. Endophytic colonization was greater in leaves and stems than roots. Endophytic colonization by B. bassiana had no adverse effects on the growth of sorghum plants. Leaf inoculation with a conidial suspension proved to be the best method to introduce B. bassiana into sorghum leaves for plants growing in either sterile or non-sterile soil. Further research should focus on the virulence of endophytic B. bassiana against sorghum stem borers.  相似文献   

14.
The analytical power of Arabidopsis thaliana genomics has turned its local varieties (accessions) from divergent habitats into important genetic resources. Variant alleles harbored in those accessions are used to identify loci controlling important plant traits with enormous benefits for analytical as well as applied purposes. We argue here that the information derived from Arabidopsis accessions can be further expanded, if a systematic effort for recording the growth conditions of new Arabidopsis accessions is rapidly implemented. The modest and feasible changes in genetic sampling practice that we propose will dramatically increase the quality and quantity of data obtained from Arabidopsis accessions. The broader data set will no longer focus solely on the genetic mechanism within the plant, but will also address the plant''s interaction with its environment. We suggest (a) a modified sampling strategy involving sample size and the recording of additional growth conditions (Appendix) and (b) the establishment of a centralized and expandable database to cover all available information regarding the habitats of Arabidopsis accessions.Key words: adaptation, Arabidopsis, ecology, evolution, genetic resources, sampling strategyThe influence of the immediate abiotic and biotic environment on the evolution of developmental, physiological, reproductive, defense-related and a variety of ecological characteristics of plants is well documented,13 but is rarely connected to the level of individual gene activities. This is partly because for most plants, the genetic dissection of adaptation processes at the individual, population and evolutionary levels is inherently difficult. The current and foreseeable wealth of molecular insights in the Arabidopsis model system could fill this void. With its very wide natural geographic distribution over large parts of Asia and Europe4 and it''s more recent (human-induced) colonization of habitats in America, Arabidopsis thaliana provides immediate opportunities for studying adaptation processes in great molecular and genetic detail. Therefore, it is not surprising that Arabidopsis has also been used as a model system for population genetics and ecological adaptation in recent years.58 In a parallel dramatic development, increasing numbers of Arabidopsis accessions are currently being characterized in unprecedented molecular detail to be used as parental lines in QTL mapping studies. These two lines of research could most productively benefit from each other, if habitat information for each accession would become available.An example of a relevant question is: how are environmental variables correlated to phenotypic or gene expression profiles of Arabidopsis accessions? An expandable list of such variables to be recorded at the sampling site would include elevation, aspect (facing north, south, east or west), soil type and soil conditions, rainfall, temperature regime, wind direction and velocity, exposure to sun irradiation, level of shade, UV level, photoperiod, snow cover, local plant communities, herbivore diversity, frequency and pressure, fire history, evidence of various disturbances and apparent diseases. We know, for instance, that various characters, such as vascular structure, fiber length and density, cuticle thickness, stomata density and pigment composition, can be subject to selection even within small, locally restricted populations.912 At a time when phenotypic and molecular profiles of Arabidopsis accession are being scrutinized with ever increasing precision, it would be an inexcusable loss, if the corresponding habitat data for those accessions were simply not recorded or retrievable. It seems evident that with a small, but well-coordinated additional effort, it could be possible to address a much wider array of questions and to direct the power of Arabidopsis genomics and genetics to the study of plant adaptations and evolution. Specifically, we propose that a standard list of environmental data should be provided with each accession of seeds, together with multiple deposited plants as well as electronic images of the exact site and general environment and a precise geographical position (GPS) of the sampling site (see appendix). Precise site documentation may enable re-sampling of populations to study their genetic changes over time.Detailed recording of accession habitats and the collection of multiple plants at each location would reciprocally benefit QTL mapping efforts. First, it would firmly establish that the parental lines of a mapping cross are true natural genotypes. This is important, because any exploitation of natural alleles in breeding and biotechnology should rely in the assumption that these alleles have passed the test of natural selection and are not spontaneous mutants or propagation contaminants. Secondly, emerging correlations between habitat conditions and phenotype can guide accession choices for the establishment of new mapping populations. Phenotyping of accessions for specific cell biological or biochemical traits can be labor intensive. To keep numbers manageable, habitat properties with predictive power would be highly desirable.In summary, we do not consider our suggestions of approximately 30 parameters (see the appendix) to be more than the beginning of a discussion. However, it seems to us that the need for organized habitat characterization and sampling is so urgent that this discussion should begin immediately.  相似文献   

15.
We report on the second phase of a programme to select a relative of Arabidopsis thaliana for use in large-scale molecular genetic studies of nickel (Ni) and zinc (Zn) hyperaccumulation. We also report on the relatedness among Thlaspi caerulescens accessions and the utility of using O-acetyl-L-serine as a marker for Ni and Zn hyperaccumulation potential. Twenty-seven new accessions of metal-accumulating species collected in the Czech Republic, France, Greece, Italy, Slovenia and the USA during Spring-Summer 2002 were evaluated. The criteria established for selection were hyperaccumulation of metals (Ni and Zn); compact growth habit; reasonable time to flowering; production of > or = 1000 seeds per plant; self-fertility; compact diploid genome; high sequence similarity to A. thaliana; > or = 0.1% transformation efficiency with easy selection. We conclude that the best candidate identified in the first phase was the best candidate overall: T. caerulescens accession St Félix de Pallières.  相似文献   

16.
BACKGROUND AND AIMS: A recent method used to test for local adaptation is a common garden experiment where analyses are calibrated to the environmental conditions of the garden. In this study the calibrated common garden approach is used to test for patterns of adaptation to climate in accessions of Arabidopsis thaliana. METHODS: Seedlings from 21 accessions of A. thaliana were planted outdoors in College Park, MD, USA, and development was monitored during the course of a growing season. ANOVA and multiple regression analysis were used to determine if development traits were significant predictors of plant success. Previously published data relating to accessional differences in genetic and physiological characters were also examined. Historical records of climate were used to evaluate whether properties of the site of origin of an accession affected the fitness of plants in a novel environment. KEY RESULTS: By calibrating the analysis to the climatic conditions of the common garden site, performance differences were detected among the accessions consistent with a pattern of adaptation to latitude and climatic conditions. Relatively higher accession fitness was predicted by a latitude and climatic history similar to that of College Park in April and May during the main growth period of this experiment. The climatic histories of the accessions were better predictors of performance than many of the life-history and growth measures taken during the experiment. CONCLUSIONS: It is concluded that the calibrated common garden experiment can detect local adaptation and guide subsequent reciprocal transplant experiments.  相似文献   

17.
Sequence variation of MicroRNAs and their binding sites in Arabidopsis   总被引:1,自引:0,他引:1  
Major differences exist between plants and animals both in the extent of microRNA (miRNA)-based gene regulation and the sequence complementarity requirements for miRNA-messenger RNA pairing. Whether these differences affect how these sites evolve at the molecular level is unknown. To determine the extent of sequence variation at miRNAs and their targets in a plant species, we resequenced 16 miRNA families (66 miRNAs in total) and all 52 of the characterized binding sites for these miRNAs in the plant model Arabidopsis (Arabidopsis thaliana), accounting for around 50% of the known miRNAs and binding sites in this species. As has been shown previously in humans, we find that both miRNAs and their target binding sites have very low nucleotide variation and divergence compared to their flanking sequences in Arabidopsis, indicating strong purifying selection on these sites in this species. Sequence data flanking the mature miRNAs, however, exhibit normal levels of polymorphism for the accessions in this study and, in some cases, nonneutral evolution or subtle effects on predicted pre-miRNA secondary structure, suggesting that there is raw material for the differential function of miRNA alleles. Overall, our results show that despite differences in the architecture of miRNA-based regulation, miRNAs and their targets are similarly constrained in both plants and animals.  相似文献   

18.
Four rhizobacterial strains and acibenzolar-S-methyl (ASM), a chemical activator, which suppressed foliar blight of amaranthus (Amaranthus tricolor L.) caused by Rhizoctonia solani Kühn were evaluated for their effect on plant growth. The experiments were performed both under sterile and non-sterile soil conditions, in the presence or absence of the pathogen. In all cases, plants treated with ASM showed significant reduction in growth, as determined by shoot length, and shoot and root dry weight when compared to other treatments. The growth retardation effect of ASM was more profound with respect to shoot length. Reduction in shoot length was least when plants were treated with a combination of the chemical activator and Pseudomonas putida 89B61 under non-sterile soil conditions in the absence of the pathogen. Both under sterile and non-sterile soil conditions, in the presence of the pathogen, reduction in shoot length due to application of ASM was diminished significantly when plants were treated with rhizobacterial strain Pseudomonas fluorescens PN026R. Combined use of plant growth-promoting rhizobacteria (PGPR) and ASM was found to be beneficial as the growth retardation effect of the plant defense activator was reduced by the growth-promoting ability of the rhizobacteria.  相似文献   

19.
Bacterial wilt, one of the most devastating bacterial diseases of plants worldwide, is caused by Ralstonia solanacearum and affects many important crop species. We show that several strains isolated from solanaceous crops in Europe are pathogenic in different accessions of Arabidopsis thaliana. One of these strains, 14.25, causes wilting symptoms in A. thaliana accession Landsberg erecta (Ler) and no apparent symptoms in accession Columbia (Col-0). Disease development and bacterial multiplication in the susceptible Ler accession depend on functional hypersensitive response and pathogenicity (hrp) genes, key elements for bacterial pathogenicity. Genetic analysis using Ler x Col-0 recombinant inbred lines showed that resistance is governed by at least three loci: QRS1 (Quantitative Resistance to R. solanacearum) and QRS2 on chromosome 2, and QRS3 on chromosome 5. These loci explain about 90% of the resistance carried by the Col-0 accession. The ERECTA gene, which encodes a leucine-rich repeat receptor-like kinase (LRR-RLK) and affects development of aerial organs, is dimorphic in our population and lies close to QRS1. Susceptible Ler plants transformed with a wild-type ERECTA gene, and the LER line showed increased disease resistance to R. solanacearum as indicated by reduced wilt symptoms and impaired bacterial growth, suggesting unexpected cross-talk between resistance and developmental pathways.  相似文献   

20.
Plant roots can establish associations with neutral, beneficial and pathogenic groups of soil organisms. Although it has been recognized from the study of individual isolates that these associations are individually important for plant growth, little is known about interactions of whole assemblages of beneficial and pathogenic microorganisms associating with plants.We investigated the influence of an interaction between local arbuscular mycorrhizal (AM) fungal and pathogenic/saprobic microbial assemblages on the growth of two different plant species from semi-arid grasslands in NE Germany (Mallnow near Berlin). In a greenhouse experiment each plant species was grown for six months in either sterile soil or in sterile soil with one of three different treatments: 1) an AM fungal spore fraction isolated from field soil from Mallnow; 2) a soil pathogen/saprobe fraction consisting of a microbial community prepared with field soil from Mallnow and; 3) the combined AM fungal and pathogen/saprobe fractions. While both plant species grew significantly larger in the presence of AM fungi, they responded negatively to the pathogen/saprobe treatment. For both plant species, we found evidence of pathogen protection effects provided by the AM fungal assemblages. These results indicate that interactions between assemblages of beneficial and pathogenic microorganisms can influence the growth of host plants, but that the magnitude of these effects is plant species-specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号