首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In mouse zygotes, many post-translational histone modifications are asymmetrically present in male and female pronuclei. We investigated whether this principle could be used to determine the genetic composition of monopronuclear human zygotes in conventional IVF and ICSI. First we determined whether male female asymmetry is conserved from mouse to human by staining polypronuclear zygotes with antibodies against a subset of histone N-tail post-translational modifications. To analyze human monopronuclear zygotes, a modification, H3K9me3, was selected that is present in the maternal chromatin. After IVF a total of 45 monopronuclear zygotes were obtained. In 39 (87%) of zygotes a nonuniform staining pattern was observed, proof of a bi-parental origin and assumed to result into a diploid conception. Two zygotes showed no staining for the modification, indicating that the single pronucleus was of paternal origin. Four zygotes contained only maternally derived chromatin. ICSI-derived monopronuclear zygotes (n = 33) could also be divided into three groups based on the staining pattern of their chromatin: (1) of maternal origin (n = 15), (2) of paternal origin (n = 8) or (3) consisting of two chromatin domains as dominating in IVF (n = 10). Our data show that monopronuclear zygotes originating from IVF generally arise through fusion of parental chromatin after sperm penetration. Monopronuclear zygotes derived from ICSI in most cases contain uni-parental chromatin. The fact that chromatin was of paternal origin in 24% of ICSI and in 4% of the IVF zygotes confirms earlier results obtained by FISH on cleavage stages. Our findings are of clinical importance in IVF and ICSI practice.  相似文献   

2.
Uniparental chromosome elimination occurs in several interspecific hybrids of plants. We studied the mechanism underlying selective elimination of the paternal chromosomes during the development of Hordeum vulgare x H. bulbosum hybrid embryos that is restricted to an early stage of development. In almost all embryos most of the H. bulbosum chromatin undergoes a fast rate of elimination within nine days after pollination. There are differences in the mitotic behaviour between the parental chromosomes, with H. bulbosum chromatids segregating asymmetrically at anaphase. We provide evidence for a chromosome elimination pathway that involves the formation of nuclear extrusions during interphase in addition to postmitotically formed micronuclei. The chromatin structure of nuclei and micronuclei differs and heterochromatinization and disintegration of the nuclear envelope of micronuclei are the final steps of chromosome elimination.  相似文献   

3.
我们的前期研究发现:被微管抑制剂nocodazole抑制在第一次有丝分裂中期的小鼠受精卵在加入6-DMAP处理后核膜重新出现,并且父、母本的基因组未发生融合,分别形成了类似雌、雄原核的两个细胞核,它们共存于卵细胞质中,我们把这种特殊的胚胎称之为PM胚胎(post-mitoticembryo)。本研究表明:在去除抑制剂3h后未能形成核膜的胚胎进一步卵裂,而形成核膜的PM胚胎培养24h未见进一步发育。此外,我们采用免疫荧光染色观察PM胚胎核膜重现过程中核纤层蛋白B的动力学变化,结果显示:在加入6-DMAP后核纤层蛋白B在染色体周围逐渐聚集,约3h后核膜完全形成,此时核纤层蛋白B在染色体周围的聚集达到最高峰。文中还对6-DMAP诱导核膜形成的机制进行了探讨。  相似文献   

4.
Utani K  Okamoto A  Shimizu N 《PloS one》2011,6(11):e27233
Micronucleation, mediated by interphase nuclear budding, has been repeatedly suggested, but the process is still enigmatic. In the present study, we confirmed the previous observation that there are lamin B1-negative micronuclei in addition to the positive ones. A large cytoplasmic bleb was found to frequently entrap lamin B1-negative micronuclei, which were connected to the nucleus by a thin chromatin stalk. At the bottom of the stalk, the nuclear lamin B1 structure appeared broken. Chromatin extrusion through lamina breaks has been referred to as herniation or a blister of the nucleus, and has been observed after the expression of viral proteins. A cell line in which extrachromosomal double minutes and lamin B1 protein were simultaneously visualized in different colors in live cells was established. By using these cells, time-lapse microscopy revealed that cytoplasmic membrane blebbing occurred simultaneously with the extrusion of nuclear content, which generated lamin B1-negative micronuclei during interphase. Furthermore, activation of cytoplasmic membrane blebbing by the addition of fresh serum or camptothecin induced nuclear budding within 1 to 10 minutes, which suggested that blebbing might be the cause of the budding. After the induction of blebbing, the frequency of lamin-negative micronuclei increased. The budding was most frequent during S phase and more efficiently entrapped small extrachromosomal chromatin than the large chromosome arm. Based on these results, we suggest a novel mechanism in which cytoplasmic membrane dynamics pulls the chromatin out of the nucleus through the lamina break. Evidence for such a mechanism was obtained in certain cancer cell lines including human COLO 320 and HeLa. The mechanism could significantly perturb the genome and influence cancer cell phenotypes.  相似文献   

5.
Complete uniparental chromosome elimination occurs in several interspecific hybrids of plants. We studied the mechanisms underlying selective elimination of the paternal chromosomes during the development of wheat (Triticum aestivum) x pearl millet (Pennisetum glaucum) hybrid embryos. All pearl millet chromosomes were eliminated in a random sequence between 6 and 23 d after pollination. Parental genomes were spatially separated within the hybrid nucleus, and pearl millet chromatin destined for elimination occupied peripheral interphase positions. Structural reorganization of the paternal chromosomes occurred, and mitotic behavior differed between the parental chromosomes. We provide evidence for a novel chromosome elimination pathway that involves the formation of nuclear extrusions during interphase in addition to postmitotically formed micronuclei. The chromatin structure of nuclei and micronuclei is different, and heterochromatinization and DNA fragmentation of micronucleated pearl millet chromatin is the final step during haploidization.  相似文献   

6.
7.
Female mammals inactivate one of their two X-chromosomes to compensate for the difference in gene-dosage with males that have just one X-chromosome. X-chromosome inactivation is initiated by the expression of the non-coding RNA Xist, which coats the X-chromosome in cis and triggers gene silencing. In early mouse development the paternal X-chromosome is initially inactivated in all cells of cleavage stage embryos (imprinted X-inactivation) followed by reactivation of the inactivated paternal X-chromosome exclusively in the epiblast precursors of blastocysts, resulting temporarily in the presence of two active X-chromosomes in this specific lineage. Shortly thereafter, epiblast cells randomly inactivate either the maternal or the paternal X-chromosome. XCI is accompanied by the accumulation of histone 3 lysine 27 trimethylation (H3K27me3) marks on the condensed X-chromosome. It is still poorly understood how XCI is regulated during early human development. Here we have investigated lineage development and the distribution of H3K27me3 foci in human embryos derived from an in-vitro model for human implantation. In this system, embryos are co-cultured on decidualized endometrial stromal cells up to day 8, which allows the culture period to be extended for an additional two days. We demonstrate that after the co-culture period, the inner cell masses have relatively high cell numbers and that the GATA4-positive hypoblast lineage and OCT4-positive epiblast cell lineage in these embryos have segregated. H3K27me3 foci were observed in ~25% of the trophectoderm cells and in ~7.5% of the hypoblast cells, but not in epiblast cells. In contrast with day 8 embryos derived from the co-cultures, foci of H3K27me3 were not observed in embryos at day 5 of development derived from regular IVF-cultures. These findings indicate that the dynamics of H3K27me3 accumulation on the X-chromosome in human development is regulated in a lineage specific fashion.  相似文献   

8.
Homomorphic, chromosomally abnormal roosters were mated to normal hens. The 23 hens produced 67 embryos, including two triploids and a haploid-triploid mosaic at about 26 hours of incubation. Both of the triploid embryos were conceived within a 5-day period. The presence of a single genome of paternal origin with marker chromosomes in each triploid led to the conclusion that these embryos were derived from diploid, ZW-type ova fertilized by haploid, Z-type spermatozoa. The inheritance pattern of the mosaic embryo was clearly due to a spermatozoal origin for the haploid cell line; and one genome of the three in the triploid cell line was paternal. The sec chromosomes were Z/ZZZ, with one Z of each cell line being a translocation product of paternal derivation.  相似文献   

9.
Tight junctions (TJs) perform a critical role in the transport functions and morphogenetic activity of the primary epithelium formed during Xenopus cleavage. Biogenesis of these junctions was studied by immunolocalization of TJ-associated proteins (cingulin, ZO-1 and occludin) and by an in vivo biotin diffusion assay. Using fertilized eggs synchronized during the first division cycle, we found that membrane assembly of the TJ initiated at the animal pole towards the end of zygote cytokinesis and involved sequential incorporation of components in the order cingulin, ZO-1 and occludin. The three constituents appeared to be recruited from maternal stores and were targeted to the nascent TJ site by different pathways. TJ protein assembly was focused precisely to the border between the oolemma-derived apical membrane and newly-inserted basolateral membrane generated during cytokinesis and culminated in the formation of functional TJs in the two-cell embryo, which maintained a diffusion barrier. New membrane formation and the generation of cell surface polarity therefore precede initiation of TJ formation. Moreover, assembly of TJ marker protein precisely at the apical-basolateral membrane boundary was preserved in the complete absence of intercellular contacts and adhesion. Thus, the mechanism of TJ biogenesis in the Xenopus early embryo relies on intrinsic cues of a cell autonomous mechanism. These data reveal a distinction between Xenopus and mammalian early embryos in the origin and mechanisms of epithelial cell polarization and TJ formation during cleavage of the egg.  相似文献   

10.
《Theriogenology》2015,84(9):1408-1415
In vitro production of bovine embryos is a biotechnology of great economic impact. Epigenetic processes, such as histone remodeling, control gene expression and are essential for proper embryo development. Given the importance of IVP as a reproductive biotechnology, the role of epigenetic processes during embryo development, and the important correlation between culture conditions and epigenetic patterns, the present study was designed as a 2 × 2 factorial to investigate the influence of varying oxygen tensions (O2; 5% and 20%) and concentrations of fetal bovine serum (0% and 2.5%), during IVC, in the epigenetic remodeling of H3K9me2 (repressive) and H3K4me2 (permissive) in bovine embryos. Bovine oocytes were used for IVP of embryos, cleavage and blastocyst rates were evaluated, and expanded blastocysts were used for evaluation of the histone marks H3K9me2 and H3K4me2. Morulae and expanded blastocysts were also used to evaluate the expression of remodeling enzymes, specific to the aforementioned marks, by real-time polymerase chain reaction. Embryos produced in the presence of fetal bovine serum (2.5%) had a 10% higher rate of blastocyst formation. Global staining for the residues H3K9me2 and H3K4me2 was not affected significantly by the presence of serum. Notwithstanding, the main effect of oxygen tension was significant for both histone marks, with both repressive and permissive marks being higher in embryos cultured at the higher oxygen tension; however, expression of the remodeling enzymes did not differ in morulae or blastocysts in response to the varying oxygen tension. These results suggest that the use of serum during IVC of embryos increases blastocyst rate without affecting the evaluated histone marks and that oxygen tension has an important effect on the histone marks H3K9me2 and H3K4me2 in bovine blastocysts.  相似文献   

11.
12.
Nuclear lamin isoforms of vertebrates can be divided into two major classes. The B-type lamins are membrane associated throughout the cell cycle, whereas A-type lamins are recovered from mitotic cell homogenates in membrane-free fractions. A feature of oogenesis in birds and mammals is the nearly exclusive presence of B-type lamins in oocyte nuclear envelopes. In contrast, oocytes and early cleavage embryos of the amphibian Xenopus laevis are believed to contain a single lamin isoform, lamin LIII, which after nuclear envelope breakdown during meiotic maturation is reported to be completely soluble. Consequently, we have reexamined the lamin complement of Xenopus oocyte nuclear envelopes, egg extracts, and early embryos. An mAb (X223) specific for the homologous B-type lamins B2 of mouse and LII of Xenopus somatic cells (Hoger, T., K. Zatloukal, I. Waizenegger, and G. Krohne. 1990. Chromosoma. 99:379-390) recognized a Xenopus oocyte nuclear envelope protein biochemically distinct from lamin LIII and very similar or identical to somatic cell lamin LII. Oocyte lamin LII was detectable in nuclear envelopes of early cleavage embryos. Immunoblotting of fractionated egg extracts revealed that approximately 20-23% of lamin LII and 5-7% of lamin LIII were membrane associated. EM immunolocalization demonstrated that membrane-bound lamins LII and LIII are associated with separate vesicle populations. These findings are relevant to the interpretation of nuclear reconstitution experiments using Xenopus egg extracts.  相似文献   

13.
Epigenetic modifications of the chromatin structure are crucial for many biological processes and act on genes during the development and germination of seeds. The spatial distribution of 3 epigenetic markers, i.e. H4K5ac, H3K4me2 and H3K4me1 was investigated in ‘matured,’ ‘dry,’ ‘imbibed” and ‘germinating’ embryos of a model grass, Brachypodium. Our results indicate that the patterns of epigenetic modification differ in the various types of tissues of embryos that were analyzed. Such a tissue-specific manner of these modifications may be linked to the switch of the gene expression profiles in various organs of the developing embryo.  相似文献   

14.
15.
To reveal the extent of domain-wide epigenetic features at imprinted gene clusters, we performed a high-resolution allele-specific chromatin analysis of over 100 megabases along the maternally or paternally duplicated distal chromosome 7 (Chr7) and Chr15 in mouse embryo fibroblasts (MEFs). We found that reciprocal allele-specific features are limited to imprinted genes and their differentially methylated regions (DMRs), whereas broad local enrichment of H3K27me3 (BLOC) is a domain-wide feature at imprinted clusters. We uncovered novel allele-specific features of BLOCs. A maternally biased BLOC was found along the H19-Igf2 domain. A paternal allele-specific gap was found along Kcnq1ot1, interrupting a biallelic BLOC in the Kcnq1-Cdkn1c domain. We report novel allele-specific chromatin marks at the Peg13 and Slc38a4 DMRs, Cdkn1c upstream region, and Inpp5f_v2 DMR and paternal allele-specific CTCF binding at the Peg13 DMR. Additionally, we derived an imprinted gene predictor algorithm based on our allele-specific chromatin mapping data. The binary predictor H3K9ac and CTCF or H3K4me3 in one allele and H3K9me3 in the reciprocal allele, using a sliding-window approach, recognized with precision the parental allele specificity of known imprinted genes, H19, Igf2, Igf2as, Cdkn1c, Kcnq1ot1, and Inpp5f_v2 on Chr7 and Peg13 and Slc38a4 on Chr15. Chromatin features, therefore, can unequivocally identify genes with imprinted expression.  相似文献   

16.
The endosperm is a seed tissue unique to flowering plants. Due to its central role in nourishing and protecting the embryo, endosperm development is subject to parental conflicts and adaptive processes, which led to the evolution of parent-of-origin-dependent gene regulation. The role of higher-order chromatin organization in regulating the endosperm genome was long ignored due to technical hindrance. We developed a combination of approaches to analyze nuclear structure and chromatin organization in Arabidopsis thaliana endosperm. Endosperm nuclei showed a less condensed chromatin than other types of nuclei and a peculiar heterochromatin organization, with smaller chromocenters and additional heterochromatic foci interspersed in euchromatin. This is accompanied by a redistribution of the heterochromatin mark H3K9me1 from chromocenters toward euchromatin and interspersed heterochromatin. Thus, endosperm nuclei have a specific nuclear architecture and organization, which we interpret as a relaxed chromocenter-loop model. The analysis of endosperm with altered parental genome dosage indicated that the additional heterochromatin may be predominantly of maternal origin, suggesting differential regulation of maternal and paternal genomes, possibly linked to genome dosage regulation.  相似文献   

17.
18.
Insulin-like growth factor 2 (Igf 2) and H19 genes are oppositely imprinted and as such have been most extensively studied imprinted genes both genetically and at the molecular level. Imprints of the H19 gene, being established during spermatogenesis, are epigenetically transmitted to the somatic cells of the embryo. Current hypotheses attempting to explain the allele-specific silence of the H19 gene include DNA methylation and chromatin condensation. In order to understand the molecular basis of H19 epigenesis, it is crucial to identify the markings in the chromatin organising the imprinted domain in spermatozoa. Using Micrococcal nuclease (MNase), DNase I and Methidiumpropyl-EDTA. iron II (MPE·Fe(II)) as chromatin probes, we demonstrate that in mouse epididymal spermatozoa, at least 4 kb DNA upstream of the H19 ‘cap’ site, containing the imprinted and differentially methylated domain (DMD), is heterochromatic. The cleavage sites in this domain (−2 to −4 kb) exhibit ~425 bp periodicity. This structure is maintained in the paternal allele of normal embryos and is disrupted at −2.2, −2.65 and at −3.5 kb in embryos maternally disomic for the distal end of chromosome 7 (MatDp 7). The hypersensitive sites in chromatin precisely register the MPE·Fe(II) cleavage sites in chromosomal DNA. Therefore, the DNA sequences in the imprinted domain constrain the chromatin structure in a way similar to that of 1.688 g/cm3 Drosophila satellite chromatin. In addition, we find that condensation of the paternal allele correlates with methylation-dependent alteration in the structure of DNA sequences in DMD. These results suggest that CpG-methylation induces localised changes in DNA conformation and these facilitate consequent remodelling of chromatin thereby allowing the paternal and maternal H19 alleles to be distinguished.  相似文献   

19.
The presence of micronuclei in mammalian cells is related to several mutagenetic stresses. In order to understand how micronuclei emerge, behave in cells, and affect cell fate, we performed extensive time-lapse microscopy of HeLa H2B-GFP cells in the presence of hydroxyurea at low concentration. Micronuclei formed after mitosis from lagging chromatids or chromatin bridges between anaphase chromosomes and were stably maintained in the cells for up to one cell cycle. Nuclear buds also formed from chromatin bridges or during interphase. If the micronuclei-bearing cells entered mitosis, they either produced daughter cells without micronuclei or, more frequently, produced cells with additional micronuclei. Low concentrations of hydroxyurea efficiently induced multipolar mitosis, which generated lagging chromatids or chromatin bridges, and also generated multinuclear cells that were tightly linked to apoptosis. We found that the presence of micronuclei is related to apoptosis but not to multipolar mitosis. Furthermore, the structural heterogeneity among micronuclei, with respect to chromatin condensation or the presence of lamin B, derived from the mechanism of micronuclei formation. Our study reinforces the notion that micronucleation has important implications in the genomic plasticity of tumor cells.  相似文献   

20.
The type and pattern of epigenetic modification in donor cells can significantly affect the developmental competency of somatic cell nuclear transfer (SCNT) embryos. Here, we investigated the developmental capacity, gene expression, and epigenetic modifications of SCNT embryos derived from porcine bone marrow‐derived mesenchymal stem cells (BMSCs) and fetal fibroblasts (FFs) donor cells compared to embryos obtained from in vitro fertilization (IVF). Compared to FFs, the donor BMSCs had more active epigenetic markers (Histone H3 modifications: H3K9Ac, H3K4me3, and H3K4me2) and fewer repressive epigenetic markers (H3K9me3, H3K9me2, and DNA methyltransferase 1). Embryos derived from BMSC nuclear‐transfer (BMSC‐NT embryos) and IVF embryos had significantly higher cleavage and blastocyst rates (BMSC‐NT: 71.3 ± 3.4%, 29.1 ± 2.3%; IVF: 69.2 ± 2.2%, 30.2 ± 3.3%; respectively) than FF‐NT embryos (58.1 ± 3.4%, 15.1 ± 1.5%, respectively). Bisulfite sequencing revealed that DNA methylation at the promoter regions of NANOG and POU5F1 was lower in BMSC‐NT embryos (30.0%, 9.8%, respectively) than those in FF‐NT embryos (34.2%, 28.0%, respectively). We also found that BMSC‐NT embryos had more H3K9Ac and less H3K9me3 and 5‐methylcytosine than FF‐NT embryos. In conclusion, our finding comparing BMSCs versus FFs as donors for nuclear transfer revealed that differences in the initial epigenetic state of donor cells have a remarkable effect on overall nuclear reprogramming of SCNT embryos, wherein donor cells possessing a more open chromatin state are more conducive to nuclear reprogramming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号