首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MicroRNAs与疾病和发育   总被引:1,自引:0,他引:1  
作为模式生物实验系统,线虫可用于研究控制动物发育和人类疾病遗传机制。研究发育缺陷的线虫突变体有助于在动物中发现对发育和生理过程有重要调控作用的基因。其中一些基因编码一类小RNA,如microRNA(miRNA),通过作用于特定基因信使RNA来调控其蛋白质表达。一些在线虫发育过程中有功能的miRNA在人体中也存在。它们参与调控与疾病相关的生物学过程,如癌症、糖尿病和神经退行性疾病。通过分析miRNA在临床样品、哺乳动物细胞和模式生物线虫中的表达,从而揭示miRNA调控途径在相关人类疾病中的功能。  相似文献   

2.
The nematode Caenorhabditis elegans represents an excellent model for studying many aspects of sterol function on the level of a whole organism. Recent studies show that especially two processes in the life cycle of the worm, dauer larva formation and molting, depend on sterols. In both cases, cholesterol or its derivatives seem to act as hormones rather than being structural components of the membrane. Investigations on C. elegans could provide information on the etiology of human diseases that display defects in the transport or metabolism of sterols.  相似文献   

3.
Post-translational modifications (PTMs) of nucleosomal core histones play roles in basic biological processes via altering chromatin structure and creating target sites for proteins acting on chromatin. Several features make Drosophila a uniquely effective model for studying PTMs. Position effect variegation, polycomb repression, dosage compensation and several other processes extensively studied by the powerful tools of Drosophila genetics as well as polytene chromosome cytology reveal information on the dynamic changes of histone PTMs and factors that deposit, remove and recognize these. Recent determination of the genome-wide distribution of more than 20 different histone PTM types has resulted in a highly detailed view of chromatin landscape. This review samples from the wealth of data these analyses have provided together with data resulting from gene-targeted studies on the distribution and role of specific histone modifications and modifiers. As an example of the complex interactions among PTMs, we will also discuss crosstalk involving specific phosphorylated and acetylated histone forms.  相似文献   

4.
ENU mutagenesis in the mouse: application to human genetic disease.   总被引:2,自引:0,他引:2  
Genetic approaches in model organisms provide a powerful means by which to examine the biological basis of human diseases as well as the physiological processes that are affected by them. Although not without its drawbacks, the mouse has become the mammalian species of choice in studying the molecular basis of disease. Targeted mutagenesis approaches in the mouse have led to dramatic increases in our understanding of human disease processes. As a complement to these gene-driven studies, three developments have led to the reassessment of a phenotype-driven approach in the mouse--the accumulation of information that has emerged from human and mouse genome sequencing projects, the use of high-efficiency point mutagens such as N-ethyl-N-nitrosourea (ENU) and the application of systematic hierarchical screening protocols for the mouse. In this paper, progress with existing phenotypic screening programmes is discussed and opportunities for the development of new mouse disease models are presented.  相似文献   

5.
A new animal model for studying muscular dystrophy, a mutant form of the nematode Caenorhabditis elegans, brings the power of worm genetics to bear on the search for a cure for this disease; work on this worm has already led to the identification of a novel component that can suppress the mutant phenotype.  相似文献   

6.

Background  

Many biological specimens, such as living cells and their intracellular components, often exhibit very little amplitude contrast, making it difficult for conventional bright field microscopes to distinguish them from their surroundings. To overcome this problem phase contrast techniques such as Zernike, Normarsky and dark-field microscopies have been developed to improve specimen visibility without chemically or physically altering them by the process of staining. These techniques have proven to be invaluable tools for studying living cells and furthering scientific understanding of fundamental cellular processes such as mitosis. However a drawback of these techniques is that direct quantitative phase imaging is not possible. Quantitative phase imaging is important because it enables determination of either the refractive index or optical thickness variations from the measured optical path length with sub-wavelength accuracy.  相似文献   

7.
8.
The actin cytoskeleton in eukaryotic cells provides cell structure and organisation, and allows cells to generate forces against membranes. As such it is a central component of a variety of cellular structures involved in cell motility, cytokinesis and vesicle trafficking. In multicellular organisms these processes contribute towards embryonic development and effective functioning of cells of all types, most obviously rapidly moving cells like lymphocytes. Actin also defines and maintains the architecture of complex structures such as neuronal synapses and stereocillia, and is required for basic housekeeping tasks within the cell. It is therefore not surprising that misregulation of the actin cytoskeleton can cause a variety of disease pathologies, including compromised immunity, neurodegeneration, and cancer spread. Dictyostelium discoideum has long been used as a tool for dissecting the mechanisms by which eukaryotic cells migrate and chemotax, and recently it has gained precedence as a model organism for studying the roles of conserved pathways in disease processes. Dictyostelium's unusual lifestyle, positioned between unicellular and multicellular organisms, combined with ease of handling and strong conservation of actin regulatory machinery with higher animals, make it ideally suited for studying actin-related diseases. Here we address how research in Dictyostelium has contributed to our understanding of immune deficiencies and neurological defects in humans, and briefly discuss its future prospects for furthering our understanding of neurodegenerative disorders.  相似文献   

9.
The genus Gluconobacter comprises some of the most frequently used microorganisms when it comes to biotechnological applications. Not only has it been involved in "historical" production processes, such as vinegar production, but in the last decades many bioconversion routes for special and rare sugars involving Gluconobacter have been developed. Among the most recent are the biotransformations involved in the production of L-ribose and miglitol, both very promising pharmaceutical lead molecules. Most of these processes make use of Gluconobacter's membrane-bound polyol dehydrogenases. However, recently other enzymes have also caught the eye of industrial biotechnology. Among them are dextran dextrinase, capable of transglucosylating substrate molecules, and intracellular NAD-dependent polyol dehydrogenases, of interest for co-enzyme regeneration. As such, Gluconobacter is an important industrial microbial strain, but it also finds use in other fields of biotechnology, such as biosensor-technology. This review aims to give an overview of the myriad of applications for Gluconobacter, with a special focus on some recent developments.  相似文献   

10.
A Transparent Window into Biology: A Primer on Caenorhabditis elegans   总被引:1,自引:0,他引:1  
A little over 50 years ago, Sydney Brenner had the foresight to develop the nematode (round worm) Caenorhabditis elegans as a genetic model for understanding questions of developmental biology and neurobiology. Over time, research on C. elegans has expanded to explore a wealth of diverse areas in modern biology including studies of the basic functions and interactions of eukaryotic cells, host–parasite interactions, and evolution. C. elegans has also become an important organism in which to study processes that go awry in human diseases. This primer introduces the organism and the many features that make it an outstanding experimental system, including its small size, rapid life cycle, transparency, and well-annotated genome. We survey the basic anatomical features, common technical approaches, and important discoveries in C. elegans research. Key to studying C. elegans has been the ability to address biological problems genetically, using both forward and reverse genetics, both at the level of the entire organism and at the level of the single, identified cell. These possibilities make C. elegans useful not only in research laboratories, but also in the classroom where it can be used to excite students who actually can see what is happening inside live cells and tissues.  相似文献   

11.
12.
Histone modifications in response to DNA damage   总被引:1,自引:0,他引:1  
  相似文献   

13.
Due to their inherent stability, thermophilic bacteria and archaea serve as important resources for biochemical and biophysical analyses of many biological processes. Unfortunately, scientists characterizing eukaryote-specific processes, such as nuclear pre-mRNA splicing, are unable to take advantage of these sources of thermostable proteins. To identify and provide a source of thermostable eukaryotic proteins, we are characterizing splicing factors in the thermotolerant deep-sea vent polychaete, Alvinella pompejana. This worm, also known as the Pompeii worm, is found in the extreme environment of deep-sea hydrothermal vents, and is one of the most thermotolerant eukaryotic organisms known. We report on detailed analyses of U2AF65, the large subunit of the U2 small nuclear ribonucleoprotein auxiliary factor, an essential splicing factor important for intron definition and alternative splicing. The cloning and characterization of Pompeii U2AF65 show it is highly similar to human U2AF65 in sequence and function and is more thermostable than the human protein when bound to RNA in vitro. Notably, Pompeii U2AF65 can restore splicing in a human extract depleted of human U2AF. We also determine that the general splicing mechanisms and signal sequences are conserved in the Pompeii worm, an annelid which has previously been uncharacterized in terms of splicing factors and signals.  相似文献   

14.
THE centric fusion of two telocentric chromosomes to form a metacentric chromosome, described by Robertson1, is one of the basic mechanisms for altering the karyotype of eukaryotes. In conjunction with other processes, such as geographical isolation, it is frequently one of the initial steps in the formation of new species. Electron microscopy of mammalian chromosomes has suggested that both of the centromere regions may be retained during the fusion process2. A similar conclusion can be drawn on the basis of staining of the centromeric heterochromatin3. In spite of the retention of these regions it is likely that the fusion process is basically a reciprocal translocation event resulting from a crossover within the chromatin fibres that go to make up the centromeric region. The reciprocal product is presumably lost as it is too small to possess a kinetochore.  相似文献   

15.
Gill MS 《Aging cell》2006,5(1):23-30
Studies in the nematode Caenorhabditis elegans have been instrumental in defining genetic pathways that are involved in modulating lifespan. Multiple processes such as endocrine signaling, nutritional sensing and mitochondrial function play a role in determining lifespan in the worm and these mechanisms appear to be conserved across species. These discoveries have identified a range of novel targets for pharmacological manipulation of lifespan and it is likely that the nematode model will now prove useful in the discovery of compounds that slow aging. This review will focus on the endocrine targets for intervention in aging and the use of C. elegans as a system for high throughput screens of compounds for their effects on aging.  相似文献   

16.
Ripening of fleshy fruit: Molecular insight and the role of ethylene   总被引:1,自引:0,他引:1  
Development and ripening in fruit is a unique phase in the life cycle of higher plants which encompasses several stages progressively such as fruit development, its maturation, ripening and finally senescence. During ripening phase, several physiological and biochemical changes take place through differential expression of various genes that are developmentally regulated. Expression and/or suppression of these genes contribute to various changes in the fruit that make it visually attractive and edible. However, in fleshy fruit massive losses accrue during post harvest handling of the fruit which may run into billions of dollars worldwide. This encouraged scientists to look for various ways to save these losses. Genetic engineering appears to be the most promising and cost effective means to prevent these losses. Most fleshy fruit ripen in the presence of ethylene and once ripening has been initiated proceeds uncontrollably. Ethylene evokes several responses during ripening through a signaling cascade and thousands of genes participate which not only sets in ripening but also responsible for its spoilage. Slowing down post ripening process in fleshy fruit has been the major focus of ripening-related research. In this review article, various developments that have taken place in the last decade with respect to identifying and altering the function of ripening-related genes have been described. Role of ethylene and ethylene-responsive genes in ripening of fleshy fruit is also included. Taking clues from the studies in tomato as a model fruit, few case studies are reviewed.  相似文献   

17.
川楝素与青虫菌等农药混用对菜青虫增效作用的试验   总被引:6,自引:0,他引:6  
赵善欢  黄炳球 《昆虫学报》1989,32(2):158-165
川楝素分别与苏芸金杆菌(B.t. Var.galleriae)、青虫菌6号、雷公藤根粉乙醇抽提物以及化学农药乐斯本混用,对保护作物避免菜青虫(Pieris rapae L.)幼虫的取食为害有明显的增效作用,而且对幼虫的化蛹及蛹重都有明显的仰制作用,具有理论和实际意义.  相似文献   

18.
Src homology 3 (SH3) domains bind peptides to mediate protein–protein interactions that assemble and regulate dynamic biological processes. We surveyed the repertoire of SH3 binding specificity using peptide phage display in a metazoan, the worm Caenorhabditis elegans, and discovered that it structurally mirrors that of the budding yeast Saccharomyces cerevisiae. We then mapped the worm SH3 interactome using stringent yeast two‐hybrid and compared it with the equivalent map for yeast. We found that the worm SH3 interactome resembles the analogous yeast network because it is significantly enriched for proteins with roles in endocytosis. Nevertheless, orthologous SH3 domain‐mediated interactions are highly rewired. Our results suggest a model of network evolution where general function of the SH3 domain network is conserved over its specific form.  相似文献   

19.
《Cytotherapy》2023,25(3):261-269
Genome editing of hematopoietic stem and progenitor cells is being developed for the treatment of several inherited disorders of the hematopoietic system. The adaptation of CRISPR-Cas9-based technologies to make precise changes to the genome, and developments in altering the specificity and efficiency, and improving the delivery of nucleases to target cells have led to several breakthroughs. Many clinical trials are ongoing, and several pre-clinical models have been reported that would allow these genetic therapies to one day offer a potential cure to patients with diseases where limited options currently exist. However, there remain several challenges with respect to establishing safety, expanding accessibility and improving the manufacturing processes of these therapeutic products. This review focuses on some of the recent advances in the field of genome editing of hematopoietic stem and progenitor cells and illustrates the ongoing challenges.  相似文献   

20.
The nematode Caenorhabditis elegans is used extensively by scientists to study a wide variety of biological processes and is one of the most thoroughly characterized animals. Over the years, the community of C. elegans researchers has generated a wealth of information on the genetics, development, behaviour, and cellular and molecular biology of the worm. This body of data has grown even larger with the recent application of high throughput screening methodology to study gene function, expression and interactions. WormBase (http://www.wormbase.org) is the primary online source of biological data on C. elegans and related nematodes. Equipped with an assortment of powerful search tools, WormBase allows users to quickly extract a variety of information, including data on individual genes, DNA sequence, cell lineage and literature citations. As the database is well maintained and the functionalities constantly modified in response to evolving researcher needs, WormBase has become a vital component of the laboratories studying the worm and a model for other biological databases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号