首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Magnesium Isoglycyrrhizinate (MgIG), a novel molecular compound extracted from licorice root, has exhibited greater anti-inflammatory activity and hepatic protection than glycyrrhizin and β-glycyrrhizic acid. In this study, we investigated the anti-inflammatory effect and the potential mechanism of MgIG on Lipopolysaccharide (LPS)-treated RAW264.7 cells. MgIG down-regulated LPS-induced pro-inflammatory mediators and enzymes in LPS-treated RAW264.7 cells, including TNF-α, IL-6, IL-1β, IL-8, NO and iNOS. The generation of reactive oxygen species (ROS) in LPS-treated RAW264.7 cells was also reduced. MgIG attenuated NF-κB translocation by inhibiting IKK phosphorylation and IκB-α degradation. Simultaneously, MgIG also inhibited LPS-induced activation of MAPKs, including p38, JNK and ERK1/2. Taken together, these results suggest that MgIG suppresses inflammation by blocking NF-κB and MAPK signaling pathways, and down-regulates ROS generation and inflammatory mediators.  相似文献   

5.
Osteoclasts together with osteoblasts play pivotal roles in bone remodeling. The unique function and ability of osteoclasts to resorb bone makes them critical in both normal bone homeostasis and pathologic bone diseases such as osteoporosis and rheumatoid arthritis. Thus, new compounds that may inhibit osteoclastogenesis and osteoclast function may be of great value in the treatment of osteoclast-related diseases. In the present study, we examined the effect of jolkinolide B (JB), isolated from the root of Euphorbia fischeriana Steud on receptor activator of NF-κB ligand (RANKL)-induced osteoclast formation. We found that JB inhibited RANKL-induced osteoclast differentiation from bone marrow macrophages (BMMs) without cytotoxicity. Furthermore, the expression of osteoclastic marker genes, such as tartrate-resistant acid phosphatase (TRAP), cathepsin K (CtsK), and calcitonin receptor (CTR), was significantly inhibited. JB inhibited RANKL-induced activation of NF-κB by suppressing RANKL-mediated IκBα degradation. Moreover, JB inhibited RANKL-induced phosphorylation of mitogen-activated protein kinases (p38, JNK, and ERK). This study thus identifies JB as an inhibitor of osteoclast formation and provides evidence that JB might be an alternative medicine for preventing and treating osteolysis.  相似文献   

6.
Inhibition of pro-inflammatory functions of microglia has been considered a promising strategy to prevent pathogenic events in the central nervous system under neurodegenerative conditions. Here we examined potential inhibitory effects of nuclear receptor ligands on lipopolysaccharide (LPS)-induced inflammatory responses in microglial BV-2 cells. We demonstrate that a vitamin D receptor agonist 1,25-dihydroxyvitamin D3 (VD3) and a retinoid X receptor agonist HX630 affect LPS-induced expression of pro-inflammatory factors. Specifically, both VD3 and HX630 inhibited expression of mRNAs encoding inducible nitric oxide synthase (iNOS) and IL-6, whereas expression of IL-1β mRNA was inhibited only by VD3. The inhibitory effect of VD3 and HX630 on expression of iNOS and IL-6 mRNAs was additive. Effect of VD3 and HX630 was also observed for inhibition of iNOS protein expression and nitric oxide production. Moreover, VD3 and HX630 inhibited LPS-induced activation of extracellular signal-regulated kinase (ERK) and nuclear translocation of nuclear factor κB (NF-κB). PD98059, an inhibitor of ERK kinase, attenuated LPS-induced nuclear translocation of NF-κB and induction of mRNAs for iNOS, IL-1β and IL-6. These results indicate that VD3 can inhibit production of several pro-inflammatory molecules from microglia, and that suppression of ERK activation is at least in part involved in the anti-inflammatory effect of VD3.  相似文献   

7.
Huang GJ  Huang SS  Deng JS 《PloS one》2012,7(5):e35922
Inotilone was isolated from Phellinus linteus. The anti-inflammatory effects of inotilone were studied by using lipopolysaccharide (LPS)-stimulated mouse macrophage RAW264.7 cells and λ-carrageenan (Carr)-induced hind mouse paw edema model. Inotilone was tested for its ability to reduce nitric oxide (NO) production, and the inducible nitric oxide synthase (iNOS) expression. Inotilone was tested in the inhibitor of mitogen-activated protein kinase (MAPK)?[extracellular signal-regulated protein kinase (ERK), c-Jun NH(2)-terminal kinase (JNK), p38], and nuclear factor-κB (NF-κB), matrix-metalloproteinase (MMP)-9 protein expressions in LPS-stimulated RAW264.7 cells. When RAW264.7 macrophages were treated with inotilone together with LPS, a significant concentration-dependent inhibition of NO production was detected. Western blotting revealed that inotilone blocked the protein expression of iNOS, NF-κB, and MMP-9 in LPS-stimulated RAW264.7 macrophages, significantly. Inotilone also inhibited LPS-induced ERK, JNK, and p38 phosphorylation. In in vivo tests, inotilone decreased the paw edema at the 4(th) and the 5(th) h after Carr administration, and it increased the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx). We also demonstrated that inotilone significantly attenuated the malondialdehyde (MDA) level in the edema paw at the 5(th) h after Carr injection. Inotilone decreased the NO and tumor necrosis factor (TNF-α) levels on serum at the 5(th) h after Carr injection. Western blotting revealed that inotilone decreased Carr-induced iNOS, cyclooxygenase-2 (COX-2), NF-κB, and MMP-9 expressions at the 5(th) h in the edema paw. An intraperitoneal (i.p.) injection treatment with inotilone diminished neutrophil infiltration into sites of inflammation, as did indomethacin (Indo). The anti-inflammatory activities of inotilone might be related to decrease the levels of MDA, iNOS, COX-2, NF-κB, and MMP-9 and increase the activities of CAT, SOD, and GPx in the paw edema through the suppression of TNF-α and NO. This study presents the potential utilization of inotilone, as a lead for the development of anti-inflammatory drugs.  相似文献   

8.
A germacranolide sesquiterpene lactone, 2α,5-epoxy-5,10-dihydroxy-6α-angeloyloxy-9β-(3-methylbutyloxy)-germacran-8α,12-olide (EDAG), isolated from Carpesium triste var. manshuricum, showed inhibitory activity in the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS) mRNA and protein in LPS-activated macrophage cells. Molecular analysis reveals that these suppressive effects are correlated with the inhibition of NF-κB activation by EDAG. Immunoblotting showed that EDAG suppressed the LPS-induced degradation of I-κBα and decreased nuclear translocation of p65. Furthermore, EDAG showed reduced phosphorylation of ERK1/2 and p38 MAPK, whereas activation of JNK was not changed. These data suggest, at least in part, that EDAG utilizes the signal cascades of ERK1/2, p38 MAPK, and NF-κB for the suppression of iNOS gene expression.  相似文献   

9.
Osteoporosis (OS) is one of the most common healthy problems characterized by low bone mass. Osteoclast, the primary bone-resorbing cell, is responsible for destructive bone diseases including osteoporosis (OS). Cryptotanshinone (CTS), an active component extracted from the root of Salvia miltiorrhiza bunge, has been shown to prevent the destruction of cartilage and the thickening of subchondral bone in mice osteoarthritis models. However, its molecular mechanism in osteoclastogenesis needs to be determined. The aim of the current study was to explore the effect of CTS on osteoclastogenesis and further evaluate the underlying mechanism. Our results showed that CTS inhibited receptor activator of NF-κB ligand (RANKL)-induced the increase in tartrate-resistant acid phosphatase (TRAP) activity in bone marrow–derived macrophages (BMMs). In addition, the expressions of osteoclastogenesis-related marker proteins and nuclear factor of activated T-cells (NFAT) activation were suppressed by CTS treatment in BMMs. Furthermore, CTS attenuated RANKL-induced ERK phosphorylation and NF-κB activation in BMMs. These findings indicated that CTS inhibited RANKL-induced osteoclastogenesis by inhibiting ERK phosphorylation and NF-κB activation in BMMs. Thus, CTS may function as an inhibitor of osteoclastogenesis and may be considered as an alternative medicine for the prevention and treatment of OS.  相似文献   

10.
11.
Zhu C  Xiong Z  Chen X  Peng F  Hu X  Chen Y  Wang Q 《PloS one》2012,7(4):e35125
Microglial activation plays an important role in neuroinflammation, which contributes to neuronal damage, and inhibition of microglial activation may have therapeutic benefits that could alleviate the progression of neurodegeneration. Recent studies have indicated that the antimalarial agent artemisinin has the ability to inhibit NF-κB activation. In this study, the inhibitory effects of artemisinin on the production of proinflammatory mediators were investigated in lipopolysaccharide (LPS)-stimulated primary microglia. Our results show that artemisinin significantly inhibited LPS-induced production of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), monocyte chemotactic protein-1 (MCP-1) and nitric oxide (NO). Artemisinin significantly decreased both the mRNA and the protein levels of these pro-inflammatory cytokines and inducible nitric oxide synthase (iNOS) and increased the protein levels of IκB-α, which forms a cytoplasmic inactive complex with the p65-p50 heterodimeric complex. Artemisinin treatment significantly inhibited basal and LPS-induced migration of BV-2 microglia. Electrophoretic mobility shift assays revealed increased NF-κB binding activity in LPS-stimulated primary microglia, and this increase could be prevented by artemisinin. The inhibitory effects of artemisinin on LPS-stimulated microglia were blocked after IκB-α was silenced with IκB-α siRNA. Our results suggest that artemisinin is able to inhibit neuroinflammation by interfering with NF-κB signaling. The data provide direct evidence of the potential application of artemisinin for the treatment of neuroinflammatory diseases.  相似文献   

12.
In the gingival tissues of patients with periodontitis, inflammatory responses are mediated by a wide variety of genes. In our previous screening study, plasminogen activator inhibitor type 1 (PAI-1) mRNA binding protein expression was increased in gingiva from periodontitis patients. In this study, we further investigated the signaling pathway involved in PAI-1 expression induced by Porphyromonas gingivalis LPS (Pg LPS) in human gingival fibroblasts (HGF). When HGFs were treated with Pg LPS, both PAI-1 mRNA expression and PAI-1 protein were induced in a dose-dependent manner. Pg LPS induced NF-κB activation and the expressions of PAI-1 mRNA and protein were suppressed by pretreating with a NF-κB inhibitor. Pg LPS also induced ERK, p38, and JNK activation, and Pg LPS-induced PAI-1 expression was inhibited by ERK/p38/JNK inhibitor pretreatment. In conclusion, Pg LPS induced PAI-1 expression through NF-κB and MAP kinases activation in HGF.  相似文献   

13.
The biological activity of Mastixia arborea (MA) relates to inflammation, but the underlying mechanisms are largely unknown. We confirmed the anti-inflammatory effects of a methanol extract of MA extract on lipopolysaccharide (LPS)-stimulated RAW264.7 mouse macrophage cells and carrageenan-induced mice paw edema. The MA extract significantly inhibited nitric oxide (NO), prostaglandin E2 (PGE2), interleukin-1β (IL-1β), and IL-6 production in LPS-stimulated RAW264.7 cells. In vitro expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was suppressed by the extract. The extract attenuated acute inflammatory responses in carrageenan-induced mice paw edema. A mechanism study indicated that translocation of the NF-κB (p65) subunit into the nucleus and phosphorylation of ERK and JNK were inhibited by the extract. These results indicate that the extract is an effective suppressor of the inflammatory response, blocking the phosphorylation of ERK and JNK and the translocation of NF-κB in macrophages, thereby producing an anti-inflammatory effect in vivo.  相似文献   

14.
15.
Wei P  Ma P  Xu QS  Bai QH  Gu JG  Xi H  Du YG  Yu C 《Glycoconjugate journal》2012,29(5-6):285-295
Chitosan oligosaccharides (COS) have been reported to exert many biological activities, such as antioxidant, antitumor and anti-inflammatory effects. In the present study, we examined the effect of COS on nitric oxide (NO) production in LPS induced N9 microglial cells. Pretreatment with COS (50?~?200?μg/ml) could markedly inhibit NO production by suppressing inducible nitric oxide synthase (iNOS) expression in activated microglial cells. Signal transduction studies showed that COS remarkably inhibited LPS-induced phosphorylation of p38 MAPK and ERK1/2. COS pretreatment could also inhibit the activation of both nuclear factor-κB (NF-κB) and activator protein-1 (AP-1). In conclusion, our results suggest that COS could suppress the production of NO in LPS-induced N9 microglial cells, mediated by p38 MAPK and ERK1/2 pathways.  相似文献   

16.
17.
Anti-inflammatory activity of Camellia japonica oil   总被引:1,自引:0,他引:1  
Kim S  Jung E  Shin S  Kim M  Kim YS  Lee J  Park D 《BMB reports》2012,45(3):177-182
Camellia japonica oil (CJ oil) has been used traditionally in East Asia to nourish and soothe the skin as well as help restore the elasticity of skin. CJ oil has also been used on all types of bleeding instances. However, little is known about its anti-inflammatory effects. Therefore, the anti-inflammatory effects of CJ oil and its mechanisms of action were investigated. CJ oil inhibited LPS-induced production of NO, PGE(2), and TNF-α in RAW264.7 cells. In addition, expression of COX-2 and iNOS genes was reduced. To evaluate the mechanism of the anti-inflammatory activity of CJ oil, LPS-induced activation of AP-1 and NF-κB promoters was found to be significantly reduced by CJ oil. LPS-induced phosphorylation of IκBα, ERK, p38, and JNK was also attenuated. Our results indicate that CJ oil exerts anti-inflammatory effects by downregulating the expression of iNOS and COX-2 genes through inhibition of NF-κB and AP-1 signaling. [BMB reports 2012; 45(3): 177-182].  相似文献   

18.
19.
The spice-derived phenolic, malabaricone C (mal C), has recently been shown to accelerate healing of the indomethacin-induced gastric ulceration in mice. In this study, we explored its anti-inflammatory activity and investigated the underlying mechanism of the action. Mal C suppressed the microvascular permeability and the levels of tumor necrosis factor-α, interleukin-1β, and nitric oxide in the lipopolysaccharide (LPS)-administered mice. At a dose of 10 mg/kg, it showed anti-inflammatory activity comparable to that of omeprazole (5 mg/kg) and dexamethasone (50 mg/kg). It also reduced the expression and activities of inducible nitric oxide synthase, cyclooxygenase-2, as well as the pro- vs anti-inflammatory cytokine ratio in the LPS-treated RAW macrophages. Mal C was found to inhibit LPS-induced NF-kB activation in RAW 264.7 cells by blocking the MyD88-dependent pathway. Mal C suppressed NF-κB activation and iNOS promoter activity, which correlated with its inhibitory effect on IκB phosphorylation and degradation, and NF-κB nuclear translocation, in the LPS-stimulated macrophages. It also inhibited LPS-induced phosphorylation of p38 and JNK, which are also upstream activators of NF-κB, without affecting Akt phosphorylation. Mal C also effectively blocked the PKR-mediated activation of NF-κB. These findings indicate that mal C exerts an anti-inflammatory effect through NF-κB-responsive inflammatory gene expressions by inhibiting the p38 and JNK-dependent canonical NF-κB pathway as well as the PKR pathway, and is a potential therapeutic agent against acute inflammation.  相似文献   

20.
Lentinan (LNT), a β-glucan from the fruiting bodies of Lentinus edodes, is well known to have immunomodulatory activity. NO and TNF-α are associated with many inflammatory diseases. In this study, we investigated the effects of LNT extracted by sonication (LNT-S) on the NO and TNF-α production in LPS-stimulated murine RAW 264.7 macrophages. The results suggested that treatment with LNT-S not only resulted in the striking inhibition of TNF-α and NO production in LPS-activated macrophage RAW 264.7 cells, but also the protein expression of inducible NOS (iNOS) and the gene expression of iNOS mRNA and TNF-α mRNA. It is surprising that LNT-S enhanced LPS-induced NF-κB p65 nuclear translocation and NF-κB luciferase activity, but severely inhibited the phosphorylation of JNK1/2 and ERK1/2. The neutralizing antibodies of anti-Dectin-1 and anti-TLR2 hardly affected the inhibition of NO production. All of these results suggested that the suppression of LPS-induced NO and TNF-α production was at least partially attributable to the inhibition of JNK1/2 and ERK1/2 activation. This work discovered a promising molecule to control the diseases associated with overproduction of NO and TNF-α.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号