首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Life sciences》1997,61(7):PL75-PL80
Flavonoids are widely distributed phytochemicals, whose modulation of cytochrome P450 mediated carcinogen metabolism is well established. Less well studied is their effect on P450 dependent metabolism of endogenous substrates. To address this question we evaluated a series of twelve flavonoids and hematoxylin for their effect on P450-mediated steroid hydroxylation by rat liver microsomes. Site-specific 7α-, 6β- and 2α-hydroxylation of testosterone by P450s 2A1, 3A2 and 2C11, respectively, was measured. Highly selective patterns of inhibition or activation of these P450s were observed. 3,6-dichloro-2′-isopropyloxy-4′-methylflavone was the most potent inhibitor of P450 2C11 while cyanidin chloride most potently inhibited P450s 2A1 and 3A2. The flavonoid analogue hematoxylin was unique in that it activated 2C11 (by 2.5 fold) yet inhibited both 2A1 and 3A2 (by 60%). These results indicate that consumption of dietary flavonoids may likewise alter the metabolite profile of steroids and other physiological P450 substrates.  相似文献   

2.
The metabolism of ethylbenzene by cytochrome P450cam was analyzed by experimental and theoretical methods. The present experiments indicate that ethylbenzene is hydroxylated almost exclusively at the secondary ethyl carbon with about a 2:1 ratio of R:S product. Several molecular dynamics trajectories were performed with different starting conformations of ethylbenzene in the active site of P450cam. The stereochemistry of hydroxylation predicted from the molecular dynamics simulations was found to be in good agreement with the observed products.  相似文献   

3.
Structural heterogeneity and the dynamics of the complexes of enzymes with substrates can determine the selectivity of catalysis; however, fully characterizing how remains challenging as heterogeneity and dynamics can vary at the spatial level of an amino acid residue and involve rapid timescales. We demonstrate the nascent approach of site-specific two-dimensional infrared (IR) spectroscopy to investigate the archetypical cytochrome P450, P450cam, to better delineate the mechanism of the lower regioselectivity of hydroxylation of the substrate norcamphor in comparison to the native substrate camphor. Specific locations are targeted throughout the enzyme by selectively introducing cyano groups that have frequencies in a spectrally isolated region of the protein IR spectrum as local vibrational probes. Linear and two-dimensional IR spectroscopy were applied to measure the heterogeneity and dynamics at each probe and investigate how they differentiate camphor and norcamphor recognition. The IR data indicate that the norcamphor complex does not fully induce a large-scale conformational change to a closed state of the enzyme adopted in the camphor complex. Additionally, a probe directed at the bound substrate experiences rapidly interconverting states in the norcamphor complex that explain the hydroxylation product distribution. Altogether, the study reveals large- and small-scale structural heterogeneity and dynamics that could contribute to selectivity of a cytochrome P450 and illustrates the approach of site-selective IR spectroscopy to elucidate protein dynamics.  相似文献   

4.
The degradation of a series of nitroaromatic compounds by the lignin-degrading fungus Phanerochaete chrysosporium was examined. From 4-nitrotoluene (4-NT), several metabolic intermediates were identified. Initially, 4-NT was converted to 4-nitrobenzyl alcohol (4-NBA), followed by the oxidation reactions to form 4-nitrobenzaldehyde and 4-nitrobenzoic acid, albeit slowly. Exogenously added 4-nitrobenzaldehyde and 4-nitrobenzoic acid were predominantly reduced to 4-NBA. The fungal formation of 4-NBA was inhibited by piperonyl butoxide, a cytochrome P450 inhibitor, suggesting the involvement of cytochrome P450 in the hydroxylation of the methyl group. Similarly, 2-, and 3-nitrotoluenes and 4-chlorotoluene were converted to the corresponding arylalcohols by P. chrysosporium. On the other hand, toluene and 4-methoxytoluene were not converted. Thus, P. chrysosporium possesses an alkyl hydroxylation activity against aromatic compounds substituted with a strong electron-withdrawing group.  相似文献   

5.
Cytochrome P450 BM-3 from Bacillus megaterium catalyzed NADPH-supported indole hydroxylation under alkaline conditions with homotropic cooperativity toward indole. The activity was also found with the support of H2O2, tert-butyl hydroperoxide (tBuOOH), or cumene hydroperoxide (CuOOH). Enhanced activity and heterotropic cooperativity were observed in CuOOH-supported hydroxylation, and both the Hill coefficient and substrate concentration required for half-maximal activity in the CuOOH-supported reaction were much lower than those in the H2O2-, tBuOOH-, or NADPH-supported reactions. CuOOH greatly enhanced NADPH consumption and indole hydroxylation in the NADPH-supported reaction. However, when CuOOH was replaced by tBuOOH or H2O2, heterotropic cooperativity was not observed. Spectral studies also confirmed that CuOOH stimulated indole binding to P450 BM-3. Interestingly, a mutant enzyme with enhanced indole-hydroxylation activity, F87V (Phe87 was replaced by Val), lost homotropic cooperativity towards indole and heterotropic cooperativity towards CuOOH, indicating that the active-site structure affects the cooperativities.  相似文献   

6.
Maltol derivatives are utilized in a variety of fields due to their metal-chelating abilities, and modification of the 2-methyl side chain is known to effectively expand their functional diversity. In the present study, microbial enzymes were screened for hydroxylating activity towards the 2-methyl group in a maltol derivative, 3-benzyloxy-2-methyl-4-pyrone (BMAL). Novosphingobium sp. SB32149 was found to have the ability to convert BMAL into 3-benzyloxy-2-hydroxymethyl-4-pyrone (BMAL-OH). The enzymes responsible, a cytochrome P450 monooxygenase (P450nov), a ferredoxin (FDXnov), and a ferredoxin reductase (FDRnov), were identified in the SB32149 strain. In the reaction with recombinant Escherichia coli expressing P450nov, FDXnov, and FDRnov, BMAL-OH was successfully produced from BMAL. Moreover, using the directed evolution approach, four amino acid substitutions, L188P/F218L/L237M in P450nov and A10T in FDXnov, were found to enhance BMAL-OH production. Consequently, up to 5.2 g/L BMAL-OH was obtained from 8.0 g/L BMAL by bioconversion using a 250-mL jar fermenter, indicating that this strain may be useful for synthesis of maltol derivatives which could have potential applications in various fields.  相似文献   

7.
8.
Streptomyces and other bacterial actinomycete species produce many important natural products, including the majority of known antibiotics, and cytochrome P450 (P450) enzymes catalyze important biosynthetic steps. Relatively few electron transport pathways to P450s have been characterized in bacteria, particularly streptomycete species. One of the 18 P450s in Streptomyces coelicolor A3(2), P450 105D5, was found to bind fatty acids tightly and form hydroxylated products when electrons were delivered from heterologous systems. The six ferredoxin (Fdx) and four flavoprotein Fdx reductase (FDR) proteins coded by genes in S. coelicolor were expressed in Escherichia coli, purified, and used to characterize the electron transfer pathway. Of the many possibilities, the primary pathway was NADH --> FDR1 --> Fdx4 --> P450 105D5. The genes coding for FDR1, Fdx4, and P450 105D5 are located close together in the S. coelicolor genome. Several fatty acids examined were substrates, including those found in S. coelicolor extracts, and all yielded several products. Mass spectra of the products of lauric acid imply the 8-, 9-, 10-, and 11-hydroxy derivatives. Hydroxylated fatty acids were also detected in vivo in S. coelicolor. Rates of electron transfer between the proteins were measured; all steps were faster than overall hydroxylation and consistent with rates of NADH oxidation. Substrate binding, product release, and oxygen binding were relatively fast in the catalytic cycle; high kinetic deuterium isotope effects for all four lauric acid hydroxylations indicated that the rate of C-H bond breaking is rate-limiting in every case. Thus, an electron transfer pathway to a functional Streptomyces P450 has been established.  相似文献   

9.
Summary Microsomal and soluble fractions of Pleurotus pulmonarius exhibited a reduced carbon monoxide difference spectrum with P450 maxima at 448nm and 450–452nm respectively. Substrate induced Type I spectra were observed on addition of benzo(a)pyrene to both fractions. Benzo(a)pyrene hydroxylation was measured using the aryl hydrocarbon hydroxylase assay and was observed to be P450 dependent as indicated by carbon monoxide inhibition together with the substrate binding characteristics. The activity of the fractions were observed to give Km of 200mM and 660mM and Vmax of 1.25 nmol/min/nmol P450 and 0.57 nmol/min/nmol P450 for the microsomal and cytosolic fractions respectively.  相似文献   

10.
The world we live in is a biosphere influenced by all organisms who inhabit it. It is also an ecology of genes, with some having rather startling effects. The premise put forth in this issue is cytochrome P450 is a significant player in the world around us. Life and the Earth itself would be visibly different and diminished without cytochrome P450s. The contributions to this issue range from evolution on the billion year scale to the colour of roses, from Darwin to Rachel Carson; all as seen through the lens of cytochrome P450.  相似文献   

11.
Metabolons involving plant cytochrome P450s   总被引:2,自引:0,他引:2  
Arranging biological processes into “compartments” is a key feature of all eukaryotic cells. Through this mechanism, cells can drastically increase metabolic efficiency and manage complex cellular processes more efficiently, saving space and energy. Compartmentation at the molecular level is mediated by metabolons. A metabolon is an ordered protein complex of sequential metabolic enzymes and associated cellular structural elements. The sub-cellular organization of enzymes involved in the synthesis and storage of plant natural products appears to involve the anchoring of metabolons by cytochrome P450 monooxygenases (P450s) to specific domains of the endoplasmic reticulum (ER) membrane. This review focuses on the current evidence supporting the organization of metabolons around P450s on the surface of the ER. We␣outline direct and indirect experimental data that describes P450 enzymes in the phenylpropanoid, flavonoid, cyanogenic glucoside, and other biosynthetic pathways. We also discuss the limitations and future directions of metabolon research and the potential for application to metabolic engineering endeavors.  相似文献   

12.
Cytochrome P-450(cam) monooxygenase is an important bacterial redox enzyme system with potential commercial value for detoxifying trace hydrocarbon contaminants, catalyzing regiospecific hydroxylations, and amperometric biosensing. The present study was undertaken to increase productivity of this enzyme, which is induced in its host, pseudomonas putida PpG 786, by D(+)-camphor. Culture processes were studied in batch, fed-batch, and continuous modes to evaluate metabolic behavior and develop constitutive equations for specific rate of growth (mu), camphor utilization (q(p)). Fed-batch culture was characterized by an extended linear growth phase which is often encountered in hydrocarbon fermentations. Inhibition by the camphor solvent, dimethylformamide, was assessed. Production of the terminal protein of the p-450(cam) enzyme system, cytochrome m, was shown to depend on growth medium iron content in fed-batch culture and was increased by 130% over previously protocols by eliminating iron deficiency. A continuous process that enables greater production rates was developed by using oxygen enrichment while simultaneously reducing gas throughput. Camphor and oxygen requirements were determined for fedbatch and continuous growth. (c) 1993 John Wiley & Sons, Inc.  相似文献   

13.
Combination of the pYeDP60 yeast expression system with a modified version of the improved uracil-excision (USER) cloning technique provides a new powerful tool for high-throughput expression of eukaryotic cytochrome P450s. The vector presented is designed to obtain an optimal 5' untranslated sequence region for yeast (Kozak consensus sequence), and has been tested to produce active P450s and NADPH-cytochrome P450 oxidoreductase (CPR) after 5' end silent codon optimization of the cDNA sequences. Expression of two plant cytochrome P450s, Sorghum bicolor CYP79A1 and CYP71E1, and S. bicolor CPR2 using the modified pYeDP60 vector in all three cases produced high amounts of active protein. High-throughput functional expression of cytochrome P450s have long been a troublesome task due to the workload involved in cloning of each individual P450 into a suitable expression vector. The redesigned yeast P450 expression vector (pYeDP60u) offers major improvements in cloning efficiency, speed, fidelity, and simplicity. The modified version of the USER cloning system provides great potential for further development of other yeast vectors, transforming these into powerful high-throughput expression vectors.  相似文献   

14.
Plant P450 monooxygenases represent the largest family of plant proteins and the largest collection of P450s available for comparative studies and biotechnological applications. They have been shown to catalyze a diverse array of difficult chemical reactions and have demonstrated potential to be used in pharmacological, agronomic and phytoremediative applications. Central to our use of these catalytically competent enzymes is the need to understand their interactions with substrates. Because most characterized plant P450s are membrane-bound proteins that are resistant to standard X-ray and NMR structure determinations, homology modeling represents a reliable and relatively rapid alternative method for analyzing structure-function relationships and predicting substrates for many P450s that are only now being characterized. These methods, which are being widely used in mammalian P450 structure-function studies, can allow plant biologists to define critical residues interacting with substrates and, in a directed fashion, alter the reactivities of individual monooxygenases. The homology modelings that have been done on a limited number of plant P450s and the site-directed mutations that validate them indicate that current modeling and substrate docking procedures are capable of providing structural explanations for sequence variants as well as for predicting functional characteristics of undefined P450s.  相似文献   

15.
A cytochrome P450 isozyme responsible for amphetamine deamination was purified from hepatic microsomes of untreated rabbits. The purification procedures consisted of a set of column chromatographies with omega-aminooctyl-Sepharose 4B, DEAE-cellulose, CM-Sephadex C-50, and hydroxyapatite. The deamination activity was determined by measuring the formation of phenylacetone after derivatization to the p-nitrobenzyloxim by HPLC. This isozyme, which was designated P450APD, showed a monomeric molecular weight of 51,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis and exhibited an absorption maximum of reduced CO complex at 451 nm. On the basis of the specificity toward testosterone metabolism and the N-terminal amino acid sequence, P450APD was attributed to a member of P450 class IIC subfamily, which is identical or closely related to LM3b (D. R. Koop and M. J. Coon (1979) Biochem, Biophys, Res. Commun. 91, 1075-1081), form 3b (E. F. Johnson (1980) J. Biol. Chem. 255, 304-309), and other similar preparations. Antibody against the P450APD inhibited about 80% of the amphetamine deamination activity in rabbit hepatic microsomes as well as in the reconstitution system of this P450. The present results support that P450APD is the major P450 isozyme responsible for amphetamine deamination in rabbit liver.  相似文献   

16.
The neighbourhoods of cytochrome P450 (CYP) genes in deuterostome genomes, as well as those of the cnidarians Nematostella vectensis and Acropora digitifera and the placozoan Trichoplax adhaerens were examined to find clues concerning the evolution of CYP genes in animals. CYP genes created by the 2R whole genome duplications in chordates have been identified. Both microsynteny and macrosynteny were used to identify genes that coexisted near CYP genes in the animal ancestor. We show that all 11 CYP clans began in a common gene environment. The evidence implies the existence of a single locus, which we term the ‘cytochrome P450 genesis locus’, where one progenitor CYP gene duplicated to create a tandem set of genes that were precursors of the 11 animal CYP clans: CYP Clans 2, 3, 4, 7, 19, 20, 26, 46, 51, 74 and mitochondrial. These early CYP genes existed side by side before the origin of cnidarians, possibly with a few additional genes interspersed. The Hox gene cluster, WNT genes, an NK gene cluster and at least one ARF gene were close neighbours to this original CYP locus. According to this evolutionary scenario, the CYP74 clan originated from animals and not from land plants nor from a common ancestor of plants and animals. The CYP7 and CYP19 families that are chordate-specific belong to CYP clans that seem to have originated in the CYP genesis locus as well, even though this requires many gene losses to explain their current distribution. The approach to uncovering the CYP genesis locus overcomes confounding effects because of gene conversion, sequence divergence, gene birth and death, and opens the way to understanding the biodiversity of CYP genes, families and subfamilies, which in animals has been obscured by more than 600 Myr of evolution.  相似文献   

17.
Cytochrome P450s promote a variety of rearrangement reactions both as a consequence of the nature of the radical and other intermediates generated during catalysis, and of the neighboring structures in the substrate that can interact either with the initial radical intermediates or with further downstream products of the reactions. This article will review several kinds of previously published cytochrome P450-catalyzed rearrangement reactions, including changes in stereochemistry, radical clock reactions, allylic rearrangements, “NIH” and related shifts, ring contractions and expansions, and cyclizations that result from neighboring group interactions. Although most of these reactions can be carried out by many members of the cytochrome P450 superfamily, some have only been observed with select P450s, including some reactions that are catalyzed by specific endoperoxidases and cytochrome P450s found in plants.  相似文献   

18.
19.
Komen JC  Wanders RJ 《FEBS letters》2006,580(16):3794-3798
Patients suffering from Refsum disease have a defect in the alpha-oxidation pathway which results in the accumulation of phytanic acid in plasma and tissues. Our previous studies have shown that phytanic acid is also a substrate for the omega-oxidation pathway. With the use of specific inhibitors we now show that members of the cytochrome P450 (CYP450) family 4 class are responsible for phytanic acid omega-hydroxylation. Incubations with microsomes containing human recombinant CYP450s (Supersomes) revealed that multiple CYP450 enzymes of the family 4 class are able to omega-hydroxylate phytanic acid with the following order of efficiency: CYP4F3A>CYP4F3B>CYP4F2>CYP4A11.  相似文献   

20.
DNA family shuffling is a relatively new method of directed evolution used to create novel enzymes in order to improve their existing properties or to develop new features. This method of evolution in vitro has one basic requirement: a high similarity of initial parental sequences. Cytochrome P450 enzymes are relatively well conserved in their amino acid sequences. Members of the same family can have more than 40% of sequence identity at the protein level and are therefore good candidates for DNA family shuffling. These xenobiotic-metabolising enzymes have an ability to metabolise a wide range of chemicals and produce a variety of products including blue pigments such as indigo. By applying the specifically designed DNA family shuffling approach, catalytic properties of cytochrome P450 enzymes were further extended in the chimeric progeny to include a new range of blue colour formations. This mini-review evokes the possibility of exploiting directed evolution of cytochrome P450s and the novel enzymes created by DNA family shuffling for the production of new dyes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号