首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Integrins play a fundamental role in cell migration and adhesion; knowledge of how they are regulated and controlled is vital for understanding these processes. Recent work showed that Dok1 negatively regulates integrin activation, presumably by competition with talin. To understand how this occurs, we used NMR spectroscopy and x-ray crystallography to investigate the molecular details of interactions with integrins. The binding affinities of beta3 integrin tails for the Dok1 and talin phosphotyrosine binding domains were quantified using 15N-1H hetero-nuclear single quantum correlation titrations, revealing that the unphosphorylated integrin tail binds more strongly to talin than Dok1. Chemical shift mapping showed that unlike talin, Dok1 exclusively interacts with the canonical NPXY motif of the beta3 integrin tail. Upon phosphorylation of Tyr 747 in the beta3 integrin tail, however, Dok1 then binds much more strongly than talin. Thus, we show that phosphorylation of Tyr 747 provides a switch for integrin ligand binding. This switch may represent an in vivo mechanism for control of integrin receptor activation. These results have implications for the control of integrin signaling by proteins containing phosphotyrosine binding domains.  相似文献   

2.
Regulation of integrin affinity (activation) is essential for metazoan development and for many pathological processes. Binding of the talin phosphotyrosine-binding (PTB) domain to integrin beta subunit cytoplasmic domains (tails) causes activation, whereas numerous other PTB-domain-containing proteins bind integrins without activating them. Here we define the structure of a complex between talin and the membrane-proximal integrin beta3 cytoplasmic domain and identify specific contacts between talin and the integrin tail required for activation. We used structure-based mutagenesis to engineer talin and beta3 variants that interact with comparable affinity to the wild-type proteins but inhibit integrin activation by competing with endogenous talin. These results reveal the structural basis of talin's unique ability to activate integrins, identify an interaction that could aid in the design of therapeutics to block integrin activation, and enable engineering of cells with defects in the activation of multiple classes of integrins.  相似文献   

3.
Goksoy E  Ma YQ  Wang X  Kong X  Perera D  Plow EF  Qin J 《Molecular cell》2008,31(1):124-133
Activation of heterodimeric (alpha/beta) integrin transmembrane receptors by the 270 kDa cytoskeletal protein talin is essential for many important cell adhesive and physiological responses. A key step in this process involves interaction of phosphotyrosine-binding (PTB) domain in the N-terminal head of talin (talin-H) with integrin beta membrane-proximal cytoplasmic tails (beta-MP-CTs). Compared to talin-H, intact talin exhibits low potency in inducing integrin activation. Using NMR spectroscopy, we show that the large C-terminal rod domain of talin (talin-R) interacts with talin-H and allosterically restrains talin in a closed conformation. We further demonstrate that talin-R specifically masks a region in talin-PTB where integrin beta-MP-CT binds and competes with it for binding to talin-PTB. The inhibitory interaction is disrupted by a constitutively activating mutation (M319A) or by phosphatidylinositol 4,5-bisphosphate, a known talin activator. These data define a distinct autoinhibition mechanism for talin and suggest how it controls integrin activation and cell adhesion.  相似文献   

4.
The ability of integrin adhesion receptors to undergo rapid changes in affinity for their extracellular ligands (integrin activation) is essential for the development and function of multicellular animals and is dependent on interactions between the integrin beta subunit-cytoplasmic tail and the cytoskeletal protein talin. Cross-talk among different integrins and between integrins and other receptors impacts many cellular processes including adhesion, spreading, migration, clot retraction, proliferation, and differentiation. One form of integrin cross-talk, transdominant inhibition of integrin activation, occurs when ligand binding to one integrin inhibits the activation of a second integrin. This may be relevant clinically in a number of settings such as during platelet adhesion, leukocyte trans-migration, and angiogenesis. Here we report that competition for talin underlies the trans-dominant inhibition of integrin activation. This conclusion is based on our observations that (i). beta tails selectively defective in talin binding are unable to mediate trans-dominant inhibition, (ii). trans-dominant inhibition can be reversed by overexpression of integrin binding and activating fragments of talin, and (iii). expression of another non-integrin talin-binding protein, phosphatidylinositol phosphate kinase type Igamma-90, also inhibits integrin activation. Thus, the sequestration of talin by the suppressive species is both necessary and sufficient for trans-dominant inhibition of integrin activation.  相似文献   

5.
The talin wags the dog: new insights into integrin activation   总被引:5,自引:0,他引:5  
Integrin transmembrane receptors have a unique property that distinguishes them from other signaling receptors. Their affinity for ligands can be modulated from the inside out in response to intracellular signals generated by non-integrin receptors. Recent findings provide novel mechanistic insights into this process by demonstrating that talin, a protein that links integrins to actin, is necessary for the inside-out activation of integrins.  相似文献   

6.
The lipid products of phosphoinositide 3-kinase (PI3K) are involved in many cellular responses such as proliferation, migration, and survival. Disregulation of PI3K-activated pathways is implicated in different diseases including cancer and diabetes. Among the three classes of PI3Ks, class I is the best characterized, whereas class II has received increasing attention only recently and the precise role of these isoforms is unclear. Similarly, the role of phosphatidylinositol-3-phosphate (PtdIns-3-P) as an intracellular second messenger is only just beginning to be appreciated. Here, we show that lysophosphatidic acid (LPA) stimulates the production of PtdIns-3-P through activation of a class II PI3K (PI3K-C2beta). Both PtdIns-3-P and PI3K-C2beta are involved in LPA-mediated cell migration. This study is the first identification of PtdIns-3-P and PI3K-C2beta as downstream effectors in LPA signaling and demonstration of an intracellular role for a class II PI3K. Defining this novel PI3K-C2beta-PtdIns-3-P signaling pathway may help clarify the process of cell migration and may shed new light on PI3K-mediated intracellular events.  相似文献   

7.
Transmembrane adhesion receptors, such as integrins, mediate cell adhesion by interacting with intracellular proteins that connect to the cytoskeleton. Talin, one such linker protein, is thought to have two roles: mediating inside-out activation of integrins, and connecting extracellular matrix (ECM)-bound integrins to the cytoskeleton. Talin's amino-terminal head, which consists of a FERM domain, binds an NPxY motif within the cytoplasmic tail of most integrin beta subunits. This is consistent with the role of FERM domains in recruiting other proteins to the plasma membrane. We tested the role of the talin-head-NPxY interaction in integrin function in Drosophila. We found that introduction of a mutation that perturbs this binding in vitro into the isolated talin head disrupts its recruitment by integrins in vivo. Surprisingly, when engineered into the full-length talin, this mutation did not disrupt talin recruitment by integrins nor its ability to connect integrins to the cytoskeleton. However, it reduced the ability of talin to strengthen integrin adhesion to the ECM, indicating that the function of the talin-head-NPxY interaction is solely to regulate integrin adhesion.  相似文献   

8.
Biomechanical models are important tools in the study of human motion. This work proposes a computational model to analyse the dynamics of lower limb motion using a kinematic chain to represent the body segments and rotational joints linked by viscoelastic elements. The model uses anthropometric parameters, ground reaction forces and joint Cardan angles from subjects to analyse lower limb motion during the gait. The model allows evaluating these data in each body plane. Six healthy subjects walked on a treadmill to record the kinematic and kinetic data. In addition, anthropometric parameters were recorded to construct the model. The viscoelastic parameter values were fitted for the model joints (hip, knee and ankle). The proposed model demonstrated that manipulating the viscoelastic parameters between the body segments could fit the amplitudes and frequencies of motion. The data collected in this work have viscoelastic parameter values that follow a normal distribution, indicating that these values are directly related to the gait pattern. To validate the model, we used the values of the joint angles to perform a comparison between the model results and previously published data. The model results show a same pattern and range of values found in the literature for the human gait motion.  相似文献   

9.
Laminin-integrin interactions can in some settings activate the extracellular signal-regulated kinases (ERKs) but the control mechanisms are poorly understood. Herein, we studied ERK activation in response to two laminins isoforms (-1 and -10/11) in two epithelial cell lines. Both cell lines expressed beta1-containing integrins and dystroglycan but lacked integrin alpha6beta4. Antibody perturbation assays showed that both cell lines bound to laminin-10/11 via the alpha3beta1and alpha6beta1 integrins. Although laminin-10/11 was a stronger adhesion complex than laminin-1 for both cell lines, both laminins activated ERK in only one of the two cell lines. The ERK activation was mediated by integrin alpha6beta1 and not by alpha3beta1 or dystroglycan. Instead, we found that dystroglycan-binding domains of both laminin-1 and -10/11 suppressed integrin alpha6beta1-mediated ERK activation. Moreover, the responding cell line expressed the two integrin alpha6 splice variants, alpha6A and alpha6B, whereas the nonresponding cell line expressed only alpha6B. Furthermore, ERK activation was seen in cells transfected with the integrin alpha6A subunit, but not in alpha6B-transfected cells. We conclude that laminin-1 and -10/11 share the ability to induce ERK activation, that this is regulated by integrin alpha6Abeta1, and suggest a novel role for dystroglycan-binding laminin domains as suppressors of this activation.  相似文献   

10.
The presented work describes a structural model for integrin homooligomerization, focusing on the transmembrane domains. The two noncovalently linked integrin subunits, alpha and beta, were previously shown to homodimerize or homotrimerize, respectively. Our work is based on published mutational work that induced homotrimerization of beta3 integrins. The mutations provided structural restraints for the creation of a structural model of the beta3 homotrimer by a computational search of the conformational space of homomeric interactions of the beta3 integrin. Additionally, we explored possible conformations of the alphaIIb integrin homodimer, for which no unique solution was found. Two possible models of signal transduction, involving two different alphaIIb conformations, are discussed. One of the possible homodimeric alphaIIb conformations is GpA like, which is in line with experimental evidence. Based on our here-presented structural models and on recent experiments, we will argue that most probably the heteromeric alpha/beta transmembrane complex separates in the course of clustering.  相似文献   

11.
Talin is a structural component of focal adhesion sites and is thought to be engaged in multiple protein interactions at the cytoplasmic face of cell/matrix contacts. Talin is a major link between integrin and the actin cytoskeleton and was shown to play an important role in focal adhesion assembly. Consistent with the view that talin must be activated at these sites, we found that phosphatidylinositol 4-monophosphate and phosphatidylinositol 4,5-bisphosphate (PI4,5P(2)) bound to talin in cells in suspension or at early stages of adhesion, respectively. When phosphoinositides were associated with phospholipid bilayer, talin/phosphoinositide association was restricted to PI4,5P(2). This association led to a conformational change of the protein. Moreover, the interaction between integrin and talin was greatly enhanced by PI4,5P(2)-induced talin activation. Finally, sequestration of PI4,5P(2) by a specific pleckstrin homology domain confirms that PI4,5P(2) is necessary for proper membrane localization of talin and that this localization is essential for the maintenance of focal adhesions. Our results support a model in which PI4,5P(2) exposes the integrin-binding site on talin. We propose that PI4,5P(2)-dependent signaling modulates assembly of focal adhesions by regulating integrin-talin complexes. These results demonstrate that activation of the integrin-binding activity of talin requires not only integrin engagement to the extracellular matrix but also the binding of PI4,5P(2) to talin, suggesting a possible role of lipid metabolism in organizing the sequential assembly of focal adhesion components.  相似文献   

12.
T cell-APC contact initiates T cell activation and is maintained by the integrin LFA-1. Talin1, an LFA-1 regulator, localizes to the immune synapse (IS) with unknown roles in T cell activation. In this study, we show that talin1-deficient T cells have defects in contact-dependent T cell stopping and proliferation. Although talin1-deficient T cells did not form stable interactions with APCs, transient contacts were sufficient to induce signaling. In contrast to prior models, LFA-1 polarized to T cell-APC contacts in talin1-deficient T cells, but vinculin and F-actin polarization at the IS was impaired. These results indicate that T cell proliferation requires sustained, talin1-mediated T cell-APC interactions and that talin1 is necessary for F-actin polarization and the stability of the IS.  相似文献   

13.
Talin is a 270‐kDa protein that activates integrins and couples them to cytoskeletal actin. Talin contains an N‐terminal FERM domain comprised of F1, F2 and F3 domains, but it is atypical in that F1 contains a large insert and is preceded by an extra domain F0. Although F3 contains the binding site for β‐integrin tails, F0 and F1 are also required for activation of β1‐integrins. Here, we report the solution structures of F0, F1 and of the F0F1 double domain. Both F0 and F1 have ubiquitin‐like folds joined in a novel fixed orientation by an extensive charged interface. The F1 insert forms a loop with helical propensity, and basic residues predicted to reside on one surface of the helix are required for binding to acidic phospholipids and for talin‐mediated activation of β1‐integrins. This and the fact that basic residues on F2 and F3 are also essential for integrin activation suggest that extensive interactions between the talin FERM domain and acidic membrane phospholipids are required to orientate the FERM domain such that it can activate integrins.  相似文献   

14.
Integrin-mediated cell adhesion is essential for development of multicellular organisms. In worms, flies, and vertebrates, talin forms a physical link between integrin cytoplasmic domains and the actin cytoskeleton. Loss of either integrins or talin leads to similar phenotypes. In vertebrates, talin is also a key regulator of integrin affinity. We used a ligand-mimetic Fab fragment, TWOW-1, to assess talin's role in regulating Drosophila alphaPS2betaPS affinity. Depletion of cellular metabolic energy reduced TWOW-1 binding, suggesting alphaPS2betaPS affinity is an active process as it is for vertebrate integrins. In contrast to vertebrate integrins, neither talin knockdown by RNA interference nor talin head overexpression had a significant effect on TWOW-1 binding. Furthermore, replacement of the transmembrane or talin-binding cytoplasmic domains of alphaPS2betaPS with those of human alphaIIbbeta3 failed to enable talin regulation of TWOW-1 binding. However, substitution of the extracellular and transmembrane domains of alphaPS2betaPS with those of alphaIIbbeta3 resulted in a constitutively active integrin whose affinity was reduced by talin knockdown. Furthermore, wild-type alphaIIbbeta3 was activated by overexpression of Drosophila talin head domain. Thus, despite evolutionary conservation of talin's integrin/cytoskeleton linkage function, talin is not sufficient to regulate Drosophila alphaPS2betaPS affinity because of structural features inherent in the alphaPS2betaPS extracellular and/or transmembrane domains.  相似文献   

15.
Talin, consisting of a 47-kDa N-terminal head domain (residues 1-433) and a 190-kDa C-terminal rod domain (residues 434-2541), links integrins to the actin cytoskeleton. We previously reported that the binding stoichiometry of integrin alpha(IIb)beta(3):talin is approximately 2:1. More recently, an integrin binding site has been localized to the talin head domain. In the present study, we identified another integrin binding site at the C-terminal region of the talin rod domain. In a solid phase binding assay, RGD affinity-purified alpha(IIb)beta(3) bound in a dose-dependent manner to microtiter wells coated with the isolated 190-kDa proteolytic fragment of the talin rod domain. Additionally, alpha(IIb)beta(3) also bound to the talin rod domain captured by 8d4, an anti-talin monoclonal antibody. Polyclonal antibodies raised against a recombinant protein fragment corresponding to the entire talin rod domain (anti-talin-R) inhibited alpha(IIb)beta(3) binding to intact talin by approximately 50% but completely blocked alpha(IIb)beta(3) binding to the talin rod domain. To localize the integrin binding site, we examined alpha(IIb)beta(3) binding to recombinant polypeptide fragments corresponding to partial sequences of the talin rod domain. Whereas alpha(IIb)beta(3) bound effectively to talin-(1075-2541) and talin-(1984-2541), it failed to bind to talin-(434-1076) and talin-(434-1975). Furthermore, the binding of alpha(IIb)beta(3) to talin-(1984-2541) was inhibited by anti-talin-R. These results indicate that an integrin binding site is located within residues 1984-2541 of the talin rod domain. Thus, talin contains two integrin binding sites, one in the homologous FERM (band four-point-one, ezrin, radixin, moesin) domain and another near its C terminus. Because talin exists as an anti-parallel homodimer in focal adhesions, the two integrin binding sites in the adjacent talin molecules would be in close proximity with each other.  相似文献   

16.
Platelet aggregation requires agonist-induced alphaIIbbeta3 activation, a process mediated by Rap1 and talin. To study mechanisms, we engineered alphaIIbbeta3 Chinese hamster ovary (CHO) cells to conditionally express talin and protease-activated receptor (PAR) thrombin receptors. Human PAR1 or murine PAR4 stimulation activates alphaIIbbeta3, which was measured with antibody PAC-1, indicating complete pathway reconstitution. Knockdown of Rap1-guanosine triphosphate-interacting adaptor molecule (RIAM), a Rap1 effector, blocks this response. In living cells, RIAM overexpression stimulates and RIAM knockdown blocks talin recruitment to alphaIIbbeta3, which is monitored by bimolecular fluorescence complementation. Mutations in talin or beta3 that disrupt their mutual interaction block both talin recruitment and alphaIIbbeta3 activation. However, one talin mutant (L325R) is recruited to alphaIIbbeta3 but cannot activate it. In platelets, RIAM localizes to filopodia and lamellipodia, and, in megakaryocytes, RIAM knockdown blocks PAR4-mediated alphaIIbbeta3 activation. The RIAM-related protein lamellipodin promotes talin recruitment and alphaIIbbeta3 activity in CHO cells but is not expressed in megakaryocytes or platelets. Thus, talin recruitment to alphaIIbbeta3 by RIAM mediates agonist-induced alphaIIbbeta3 activation, with implications for hemostasis and thrombosis.  相似文献   

17.
Akey feature of integrins is their ability to regulate the affinity for ligands, a process termed integrin activation. The final step in integrin activation is talin binding to the NPXY motif of the integrin beta cytoplasmic domains. Talin binding disrupts the salt bridge between the alpha/beta tails, leading to tail separation and integrin activation. We analyzed mice in which we mutated the tyrosines of the beta1 tail and the membrane-proximal aspartic acid required for the salt bridge. Tyrosine-to-alanine substitutions abolished beta1 integrin functions and led to a beta1 integrin-null phenotype in vivo. Surprisingly, neither the substitution of the tyrosines with phenylalanine nor the aspartic acid with alanine resulted in an obvious defect. These data suggest that the NPXY motifs of the beta1 integrin tail are essential for beta1 integrin function, whereas tyrosine phosphorylation and the membrane-proximal salt bridge between alpha and beta1 tails have no apparent function under physiological conditions in vivo.  相似文献   

18.
Transmigration of monocytes to the subendothelial space is the initial step of atherosclerotic plaque formation and inflammation. Integrin activation and chemotaxis are two important functions involved in monocyte transmigration. To delineate the signaling cascades leading to integrin activation and chemotaxis by monocyte chemoattractant protein-1 (MCP-1), we have investigated the roles of MAPK and Rho GTPases in THP-1 cells, a monocytic cell line. MCP-1 stimulated beta1 integrin-dependent, but not beta2 integrin-dependent cell adhesion in a time-dependent manner. MCP-1-mediated cell adhesion was inhibited by a MEK inhibitor but not by a p38-MAPK inhibitor. In contrast, MCP-1-mediated chemotaxis was inhibited by the p38-MAPK inhibitor but not by the MEK inhibitor. The inhibitor of Rho GTPase, C3 exoenzyme, and a Rho kinase inhibitor abrogated MCP-1-dependent chemotaxis but not integrin-dependent cell adhesion. Further, C3 exoenzyme and the Rho kinase inhibitor blocked MCP-1-dependent p38-MAPK activation. These data indicate that ERK is responsible for integrin activation, that p38-MAPK and Rho are responsible for chemotaxis mediated by MCP-1, and that Rho and the Rho kinase are upstream of p38-MAPK in MCP-1-mediated signaling. This study demonstrates that two distinct MAPKs regulate two dependent signaling cascades leading to integrin activation and chemotaxis induced by MCP-1 in THP-1 cells.  相似文献   

19.
Talins are adaptor proteins that connect the integrin family of cell adhesion receptors to cytoskeletal actin. Vertebrates express two closely related talins encoded by separate genes, and while it is well established that talin1 plays a key role in cell adhesion and spreading, little is known about the role of talin2. To facilitate such studies, we report the characterisation of 4 new isoform-specific talin mouse monoclonal antibodies that work in Western blotting, immuno-precipitation, immuno-fluorescence and immuno-histochemistry. Using these antibodies, we show that talin1 and talin2 do not form heterodimers, and that they are differentially localised within the cell. Talin1 was concentrated in peripheral focal adhesions while talin2 was observed in both focal and fibrillar adhesions, and knock-down of talin2 compromised fibronectin fibrillogenesis. Although differentiated human macrophages express both isoforms, only talin1 showed discrete staining and was localised to the ring structure of podosomes. However, siRNA-mediated knock-down of macrophage talin2 led to a significant reduction in podosomal matrix degradation. We have also used the antibodies to localise each isoform in tissue sections using both cryostat and paraffin-embedded material. In skeletal muscle talin2 was localised to both myotendinous junctions and costameres while talin1 was restricted to the former structure. In contrast, both isoforms co-localised in kidney with staining of the glomerulus, and the tubular epithelial and interstitial cells of the cortex and medulla. We anticipate that these antibodies will form a valuable resource for future studies on the function of the two major talin isoforms.  相似文献   

20.
Akt, a serine-threonine kinase, regulates multiple cellular processes in vascular cells. We have previously documented that Akt activates integrins and Akt1 deficiency results in matrix abnormalities in skin and blood vessels in vivo. Based on these observations, we hypothesized that Akt1 is necessary for integrin activation and matrix assembly by fibroblasts. In this study, using various cell systems, we show that Akt1 is essential for the inside-out activation of integrins in endothelial cells and fibroblasts, which in turn, mediates matrix assembly. Fibronectin is a major extracellular matrix component of the skin and the vascular basement membrane, which possesses binding sites for many integrins and extracellular matrix proteins. Akt1(-/-) fibroblasts and NIH fibroblasts expressing dominant negative Akt1 (K179M-Akt1) showed impaired fibronectin assembly compared with control fibroblasts. In contrast, expression of constitutively active Akt1 (myrAkt1) resulted in enhanced fibronectin assembly. Although increased fibronectin assembly by myrAkt1-expressing human foreskin fibroblasts was abolished by treatment with anti-integrin beta(1) blocking antibodies, treatment with beta(1)-stimulating antibodies rescued the impaired fibronectin assembly that was due to lack of Akt activity. Finally, expression of myrAkt1 corrected the phenotype of Akt1(-/-) fibroblasts thus showing that Akt1 regulates fibronectin assembly through activation of integrin alpha(5)beta(1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号